GPS接收機(jī)射頻前端電路原理與設(shè)計(jì)
發(fā)布時(shí)間:2007/8/23 0:00:00 訪問次數(shù):1266
電子技術(shù)應(yīng)用 高洪民 費(fèi)元春
摘要:在天線單元設(shè)計(jì)中采用了高頻、低噪聲放大器,以減弱天線熱噪聲及前面幾級(jí)單元電路對(duì)接收機(jī)性能的影響;基于超外差式電路結(jié)構(gòu)、鏡頻抑制和信道選擇原理,選用GP2010芯片實(shí)現(xiàn)了射頻單元的三級(jí)變頻方案,并介紹了高穩(wěn)定度本振蕩信號(hào)的合成和采樣量化器的工作原理,得到了導(dǎo)航電文相關(guān)提取所需要的二進(jìn)制數(shù)字中頻衛(wèi)星信號(hào)。
關(guān)鍵詞:GPS接收機(jī) 靈敏度 超外差 鎖相環(huán)頻率合成
利用GPS衛(wèi)星實(shí)現(xiàn)導(dǎo)航定位時(shí),用戶接收機(jī)的主要任務(wù)是提取衛(wèi)星信號(hào)中的偽隨機(jī)噪聲碼和數(shù)據(jù)碼,以進(jìn)一步解算得到接收機(jī)載體的位置、速度和時(shí)間(PVT)等導(dǎo)航信息。因此,GPS接收機(jī)是至關(guān)重要的用戶設(shè)備。目前實(shí)際應(yīng)用的GPS接收機(jī)電路一般由天線單元、射頻單元、通信單元和解算單元等四部分組成,如圖1所示。本文在分析GPS衛(wèi)星信號(hào)組成的基礎(chǔ)上,給出了射頻前端GP2010的原理及應(yīng)用。
1 GPS衛(wèi)星信號(hào)的組成
GPS衛(wèi)星信號(hào)采用典型的碼分多址(CDMA)調(diào)制技術(shù)進(jìn)行合成(如圖2所示),其完整信號(hào)主要包括載波、偽隨機(jī)碼和數(shù)據(jù)碼等三種分量。信號(hào)載波處于L波段,兩載波的中心頻率分別記作L1和L2。衛(wèi)星信號(hào)參考時(shí)鐘頻率f0為10.23MHz,信號(hào)載波L1的中心頻率為f0的154倍頻,即:
fL1=154×f0=1575.42MHz (1)
其波長(zhǎng)λ1=19.03cm;信號(hào)載波L2的中心頻率為f0的120倍頻,即:
fL2=120×f0=1227.60MHz (2)
其波長(zhǎng)λ2=24.42cm。兩載波的頻率差為347.82MHz,大約是L2的28.3%,這樣選擇載波頻率便于測(cè)得或消除導(dǎo)航信號(hào)從GPS衛(wèi)星傳播至接收機(jī)時(shí)由于電離層效應(yīng)而引起的傳播延遲誤差。偽隨機(jī)噪聲碼(PRN)即測(cè)距碼主要有精測(cè)距碼(P碼)和粗測(cè)距碼(C/A碼)兩種。其中P碼的碼率為10.23MHz、C/A碼的碼率為1.023MHz。數(shù)據(jù)碼是GPS衛(wèi)星以二進(jìn)制形式發(fā)送給用戶接收機(jī)的導(dǎo)航定位數(shù)據(jù),又叫導(dǎo)航電文或D碼,它主要包括衛(wèi)星歷、衛(wèi)星鐘校正、電離層延遲校正、工作狀態(tài)信息、C/A碼轉(zhuǎn)換到捕獲P碼的信息和全部衛(wèi)星的概略星歷;總電文由1500位組成,分為5個(gè)子幀,每個(gè)子幀在6s內(nèi)發(fā)射10個(gè)字,每個(gè)字30位,共計(jì)300位,因此數(shù)據(jù)碼的波特率為50bps。
數(shù)據(jù)碼和兩種偽隨機(jī)碼分別以同相和正交方式調(diào)制在L1載波上,而在L2載波上只用P碼進(jìn)行雙相調(diào)制,因此L1和L2的完整衛(wèi)星信號(hào)分別為:
SL1(t)=AcCi(t)Di(t)sin(ωL1t+φc) (3)
+ApPi(t)Di(t)cos(ωL1t+φP1)
SL2(t)=BpPi(t)Di(t)cos(ωL2t+φp2) (4)
式中,Ap、Bp、Ac分別為P碼和C/A碼的振幅;Pi(t)、Ci(t)分別為對(duì)應(yīng)P碼和C/A碼的偽隨機(jī)序列碼;Di(t)為衛(wèi)星導(dǎo)航電文數(shù)據(jù)碼;ωL1、ωL2分別為L(zhǎng)1和L2載波信號(hào)的角頻率;φC和φP1、φP2分別為C/A碼和P碼對(duì)應(yīng)于載波的起始相位。合成的GPS信號(hào)向全球發(fā)射,隨時(shí)隨地供接收機(jī)解算導(dǎo)航定位信息使用。
2 GPS接收機(jī)的靈敏度
GPS接收機(jī)對(duì)信號(hào)的檢測(cè)質(zhì)量取決于信噪比,當(dāng)其為“理想接收機(jī)”時(shí),接收機(jī)輸入端的信噪比Si/Ni與其輸出端的信噪比So/No相同。由于實(shí)際GPS接收機(jī)存在內(nèi)部噪聲,使得(So/No)<(Si/Ni);而噪聲越大,輸出信噪比越越小,則接收機(jī)的性能越差,此時(shí)接收機(jī)的噪聲系數(shù)為:
F=(Si/Ni)/(So/No) (5)
式(5)表明由于內(nèi)部噪聲影響,接收機(jī)輸出端信噪比相對(duì)于輸入端信噪比變差的倍數(shù),由式(5),輸入信號(hào)額定功率可表示為:
Si=NiFo(So/No) (6)
式(6)給出了GPS接收機(jī)在噪聲背景下接收衛(wèi)星信號(hào)的能力,接收機(jī)不僅要將輸出信號(hào)放大到足夠的數(shù)值,更重要的是要使輸出端的信噪比So/No達(dá)到所需比值。令(So/No)≥(So/No)min時(shí)對(duì)應(yīng)的接收機(jī)輸入信號(hào)功率的最小可檢測(cè)信號(hào)功率為Simin,通常用它表示接收機(jī)的靈敏度。由于接收機(jī)的輸入噪聲額定功率
Ni=kT0Bn (7)
式(7)中k為玻爾茲曼常數(shù),k=1.38×10 -23J/K,T0為單元電路的室內(nèi)溫度17℃(290K,絕對(duì)溫度),Bn為單元電路的帶寬。將式(7)代入式(6)可得:
Si=kT0BnFo(So/No) (8)
于是可進(jìn)一步得到GPS接收
電子技術(shù)應(yīng)用 高洪民 費(fèi)元春
摘要:在天線單元設(shè)計(jì)中采用了高頻、低噪聲放大器,以減弱天線熱噪聲及前面幾級(jí)單元電路對(duì)接收機(jī)性能的影響;基于超外差式電路結(jié)構(gòu)、鏡頻抑制和信道選擇原理,選用GP2010芯片實(shí)現(xiàn)了射頻單元的三級(jí)變頻方案,并介紹了高穩(wěn)定度本振蕩信號(hào)的合成和采樣量化器的工作原理,得到了導(dǎo)航電文相關(guān)提取所需要的二進(jìn)制數(shù)字中頻衛(wèi)星信號(hào)。
關(guān)鍵詞:GPS接收機(jī) 靈敏度 超外差 鎖相環(huán)頻率合成
利用GPS衛(wèi)星實(shí)現(xiàn)導(dǎo)航定位時(shí),用戶接收機(jī)的主要任務(wù)是提取衛(wèi)星信號(hào)中的偽隨機(jī)噪聲碼和數(shù)據(jù)碼,以進(jìn)一步解算得到接收機(jī)載體的位置、速度和時(shí)間(PVT)等導(dǎo)航信息。因此,GPS接收機(jī)是至關(guān)重要的用戶設(shè)備。目前實(shí)際應(yīng)用的GPS接收機(jī)電路一般由天線單元、射頻單元、通信單元和解算單元等四部分組成,如圖1所示。本文在分析GPS衛(wèi)星信號(hào)組成的基礎(chǔ)上,給出了射頻前端GP2010的原理及應(yīng)用。
1 GPS衛(wèi)星信號(hào)的組成
GPS衛(wèi)星信號(hào)采用典型的碼分多址(CDMA)調(diào)制技術(shù)進(jìn)行合成(如圖2所示),其完整信號(hào)主要包括載波、偽隨機(jī)碼和數(shù)據(jù)碼等三種分量。信號(hào)載波處于L波段,兩載波的中心頻率分別記作L1和L2。衛(wèi)星信號(hào)參考時(shí)鐘頻率f0為10.23MHz,信號(hào)載波L1的中心頻率為f0的154倍頻,即:
fL1=154×f0=1575.42MHz (1)
其波長(zhǎng)λ1=19.03cm;信號(hào)載波L2的中心頻率為f0的120倍頻,即:
fL2=120×f0=1227.60MHz (2)
其波長(zhǎng)λ2=24.42cm。兩載波的頻率差為347.82MHz,大約是L2的28.3%,這樣選擇載波頻率便于測(cè)得或消除導(dǎo)航信號(hào)從GPS衛(wèi)星傳播至接收機(jī)時(shí)由于電離層效應(yīng)而引起的傳播延遲誤差。偽隨機(jī)噪聲碼(PRN)即測(cè)距碼主要有精測(cè)距碼(P碼)和粗測(cè)距碼(C/A碼)兩種。其中P碼的碼率為10.23MHz、C/A碼的碼率為1.023MHz。數(shù)據(jù)碼是GPS衛(wèi)星以二進(jìn)制形式發(fā)送給用戶接收機(jī)的導(dǎo)航定位數(shù)據(jù),又叫導(dǎo)航電文或D碼,它主要包括衛(wèi)星歷、衛(wèi)星鐘校正、電離層延遲校正、工作狀態(tài)信息、C/A碼轉(zhuǎn)換到捕獲P碼的信息和全部衛(wèi)星的概略星歷;總電文由1500位組成,分為5個(gè)子幀,每個(gè)子幀在6s內(nèi)發(fā)射10個(gè)字,每個(gè)字30位,共計(jì)300位,因此數(shù)據(jù)碼的波特率為50bps。
數(shù)據(jù)碼和兩種偽隨機(jī)碼分別以同相和正交方式調(diào)制在L1載波上,而在L2載波上只用P碼進(jìn)行雙相調(diào)制,因此L1和L2的完整衛(wèi)星信號(hào)分別為:
SL1(t)=AcCi(t)Di(t)sin(ωL1t+φc) (3)
+ApPi(t)Di(t)cos(ωL1t+φP1)
SL2(t)=BpPi(t)Di(t)cos(ωL2t+φp2) (4)
式中,Ap、Bp、Ac分別為P碼和C/A碼的振幅;Pi(t)、Ci(t)分別為對(duì)應(yīng)P碼和C/A碼的偽隨機(jī)序列碼;Di(t)為衛(wèi)星導(dǎo)航電文數(shù)據(jù)碼;ωL1、ωL2分別為L(zhǎng)1和L2載波信號(hào)的角頻率;φC和φP1、φP2分別為C/A碼和P碼對(duì)應(yīng)于載波的起始相位。合成的GPS信號(hào)向全球發(fā)射,隨時(shí)隨地供接收機(jī)解算導(dǎo)航定位信息使用。
2 GPS接收機(jī)的靈敏度
GPS接收機(jī)對(duì)信號(hào)的檢測(cè)質(zhì)量取決于信噪比,當(dāng)其為“理想接收機(jī)”時(shí),接收機(jī)輸入端的信噪比Si/Ni與其輸出端的信噪比So/No相同。由于實(shí)際GPS接收機(jī)存在內(nèi)部噪聲,使得(So/No)<(Si/Ni);而噪聲越大,輸出信噪比越越小,則接收機(jī)的性能越差,此時(shí)接收機(jī)的噪聲系數(shù)為:
F=(Si/Ni)/(So/No) (5)
式(5)表明由于內(nèi)部噪聲影響,接收機(jī)輸出端信噪比相對(duì)于輸入端信噪比變差的倍數(shù),由式(5),輸入信號(hào)額定功率可表示為:
Si=NiFo(So/No) (6)
式(6)給出了GPS接收機(jī)在噪聲背景下接收衛(wèi)星信號(hào)的能力,接收機(jī)不僅要將輸出信號(hào)放大到足夠的數(shù)值,更重要的是要使輸出端的信噪比So/No達(dá)到所需比值。令(So/No)≥(So/No)min時(shí)對(duì)應(yīng)的接收機(jī)輸入信號(hào)功率的最小可檢測(cè)信號(hào)功率為Simin,通常用它表示接收機(jī)的靈敏度。由于接收機(jī)的輸入噪聲額定功率
Ni=kT0Bn (7)
式(7)中k為玻爾茲曼常數(shù),k=1.38×10 -23J/K,T0為單元電路的室內(nèi)溫度17℃(290K,絕對(duì)溫度),Bn為單元電路的帶寬。將式(7)代入式(6)可得:
Si=kT0BnFo(So/No) (8)
于是可進(jìn)一步得到GPS接收
熱門點(diǎn)擊
- 氣敏元件和傳感器技術(shù)的發(fā)展現(xiàn)狀
- 鉑電阻測(cè)溫儀的設(shè)計(jì)與實(shí)現(xiàn)
- 虛擬儀器驅(qū)動(dòng)器綜述
- 傳感器接口電路的抗干擾設(shè)計(jì)
- 8X8LED點(diǎn)陣顯示原理與編程技術(shù)
- 基于ADSP21060和VirtexII的圖
- 用PDIUSBD12和K9F5608U0A設(shè)
- 一種神經(jīng)信號(hào)調(diào)理電路的設(shè)計(jì)
- PXI總線數(shù)字輸入/輸出模塊的設(shè)計(jì)與實(shí)現(xiàn)
- 血流檢測(cè)儀的動(dòng)態(tài)電源管理模塊設(shè)計(jì)
推薦技術(shù)資料
- 按鈕與燈的互動(dòng)實(shí)例
- 現(xiàn)在趕快去看看這個(gè)目錄卞有什么。FGA15N120AN... [詳細(xì)]
- CV/CC InnoSwitch3-AQ 開
- URF1DxxM-60WR3系
- 1-6W URA24xxN-x
- 閉環(huán)磁通門信號(hào)調(diào)節(jié)芯片NSDRV401
- SK-RiSC-SOM-H27X-V1.1應(yīng)
- RISC技術(shù)8位微控制器參數(shù)設(shè)
- 多媒體協(xié)處理器SM501在嵌入式系統(tǒng)中的應(yīng)用
- 基于IEEE802.11b的EPA溫度變送器
- QUICCEngine新引擎推動(dòng)IP網(wǎng)絡(luò)革新
- SoC面世八年后的產(chǎn)業(yè)機(jī)遇
- MPC8xx系列處理器的嵌入式系統(tǒng)電源設(shè)計(jì)
- dsPIC及其在交流變頻調(diào)速中的應(yīng)用研究