開(kāi)關(guān)電源中電流檢測(cè)電路的探討
發(fā)布時(shí)間:2008/5/27 0:00:00 訪問(wèn)次數(shù):587
摘要:介紹電流檢測(cè)電路的實(shí)現(xiàn)方法,并探討在電流檢測(cè)中常遇見(jiàn)的電流互感器飽和、副邊電流下垂的問(wèn)題,最后用實(shí)驗(yàn)結(jié)果分析了升壓電路中電流檢測(cè)的方法。 關(guān)鍵詞:電流檢測(cè) 電流互感器 磁芯復(fù)位
功率開(kāi)關(guān)電路的電路拓?fù)浞譃殡娏髂J娇刂坪碗妷耗J娇刂。電流模式控制具有?dòng)態(tài)反應(yīng)快、補(bǔ)償電路簡(jiǎn)化、增益帶寬大、輸出電感小、易于均流等優(yōu)點(diǎn),因而取得越來(lái)越廣泛的應(yīng)用。而在電流模式的控制電路中,需要準(zhǔn)確、高效地測(cè)量電流值,故電流檢測(cè)電路的實(shí)現(xiàn)就成為一個(gè)重要的問(wèn)題。
本文介紹了電流檢測(cè)電路的實(shí)現(xiàn)方法,并探討在電流檢測(cè)中常遇見(jiàn)的電流互感器飽和、副邊電流下垂的問(wèn)題,最后用實(shí)驗(yàn)結(jié)果分析了升壓電路中電流檢測(cè)方法。
2 電流檢測(cè)電路的實(shí)現(xiàn)
在電流環(huán)的控制電路中,電流放大器通常選擇較大的增益,其好處是可以選擇一個(gè)較小的電阻來(lái)獲得足夠的檢測(cè)電壓,而檢測(cè)電阻小損耗也小。
電流檢測(cè)電路的實(shí)現(xiàn)方法主要有兩類:電阻檢測(cè)(resistivesensing)和電流互感器(currentsensetransformer)檢測(cè)。
電阻檢測(cè)有兩種,如圖1、圖2所示。
當(dāng)使用圖1直接檢測(cè)開(kāi)關(guān)管的電流時(shí)還必須在檢測(cè)電阻rs旁并聯(lián)一個(gè)小rc濾波電路,如圖3所示。因?yàn)楫?dāng)開(kāi)關(guān)管斷開(kāi)時(shí)集電極電容放電,在電流檢測(cè)電阻上產(chǎn)生瞬態(tài)電流尖峰,此尖峰的脈寬和幅值常足以使電流放大器鎖定,從而使pwm電路出錯(cuò)。
但是在實(shí)際電路設(shè)計(jì)時(shí),特別在設(shè)計(jì)大功率、大電流電路時(shí)采用電阻檢測(cè)的方法并不理想,因?yàn)闄z測(cè)電阻損耗大,達(dá)數(shù)瓦,甚至十幾瓦;而且很難找到幾百毫歐或幾十毫歐那么小的電阻。
實(shí)際上在大功率電路中實(shí)用的是電流互感器檢測(cè),如圖4所示。電流互感器檢測(cè)在保持良好波形的同時(shí)還具有較寬的帶寬,電流互感器還提供了電氣隔離,并且檢測(cè)電流小損耗也小,檢測(cè)電阻可選用稍大的值,如一二十歐的電阻。電流互感器將整個(gè)瞬態(tài)電流,包括直流分量耦合到副邊的檢測(cè)電阻上進(jìn)行測(cè)量,但同時(shí)也要求電流脈沖每次過(guò)零時(shí)磁芯能正常復(fù)位,尤其在平均電流模式控制中,電流互感器檢測(cè)更加適用,因?yàn)槠骄娏髂J娇刂浦斜粰z測(cè)的脈沖電流在每個(gè)開(kāi)關(guān)周期中都回零。
為了使電流互感器完全地磁復(fù)位,就需要給磁芯提供大小相等方向相反的伏秒積。在多數(shù)控制電路拓?fù)渲校娏鬟^(guò)零時(shí)占空比接近100%,所以電流過(guò)零時(shí)磁復(fù)位時(shí)間在開(kāi)關(guān)周期中只占很小的比例。要在很短的時(shí)間內(nèi)復(fù)位磁芯,常需在電流互感器上加一個(gè)很大的反向偏壓,所以在設(shè)計(jì)電流互感器電路時(shí)應(yīng)使用高耐壓的二極管耦合在電流互感器副邊和檢測(cè)電阻之間。
3 防止電流檢測(cè)電路飽和的方法
如果電流互感器的磁芯不能復(fù)位,將導(dǎo)致磁芯飽和。電流互感器飽和是一個(gè)很嚴(yán)重的問(wèn)題,首先是不能正確測(cè)量電流值,從而不能進(jìn)行有效的電流控制;其次使電流誤差放大器總是“認(rèn)為”電流值小于設(shè)定值,這將使電流誤差放大器過(guò)補(bǔ)償,導(dǎo)致電流波形失真。
電流互感器檢測(cè)最適合應(yīng)用在對(duì)稱的電路,如推挽電路、全橋電路中。對(duì)于單端電路,特別是升壓電路,會(huì)產(chǎn)生一些我們必須關(guān)注的問(wèn)題。對(duì)于升壓電路,電感電流就是輸入電流,那么在電流連續(xù)工作方式時(shí),不管充電還是放電,電感電流總是大于零,即在直流值上疊加一個(gè)充放電的波形。因此電流互感器不能用于直接測(cè)量升壓電路的輸入電流,因?yàn)殡姼须娏鞑荒芑亓愣怪绷髦怠皝G失”了;并且電流互感器因不能磁復(fù)位而飽和,從而失去過(guò)流保護(hù)功能,輸出產(chǎn)生過(guò)壓等。在降壓電路中也存在同樣的問(wèn)題,電流互感器不能用于直接測(cè)量輸出電流。
解決這個(gè)問(wèn)題的方法是用兩個(gè)電流互感器分別測(cè)量開(kāi)關(guān)電流和二極管電流,如圖4所示實(shí)際的電感電流是這兩個(gè)電流的合成,這樣每個(gè)電流互感器就有足夠的時(shí)間來(lái)復(fù)位
摘要:介紹電流檢測(cè)電路的實(shí)現(xiàn)方法,并探討在電流檢測(cè)中常遇見(jiàn)的電流互感器飽和、副邊電流下垂的問(wèn)題,最后用實(shí)驗(yàn)結(jié)果分析了升壓電路中電流檢測(cè)的方法。 關(guān)鍵詞:電流檢測(cè) 電流互感器 磁芯復(fù)位
功率開(kāi)關(guān)電路的電路拓?fù)浞譃殡娏髂J娇刂坪碗妷耗J娇刂。電流模式控制具有?dòng)態(tài)反應(yīng)快、補(bǔ)償電路簡(jiǎn)化、增益帶寬大、輸出電感小、易于均流等優(yōu)點(diǎn),因而取得越來(lái)越廣泛的應(yīng)用。而在電流模式的控制電路中,需要準(zhǔn)確、高效地測(cè)量電流值,故電流檢測(cè)電路的實(shí)現(xiàn)就成為一個(gè)重要的問(wèn)題。
本文介紹了電流檢測(cè)電路的實(shí)現(xiàn)方法,并探討在電流檢測(cè)中常遇見(jiàn)的電流互感器飽和、副邊電流下垂的問(wèn)題,最后用實(shí)驗(yàn)結(jié)果分析了升壓電路中電流檢測(cè)方法。
2 電流檢測(cè)電路的實(shí)現(xiàn)
在電流環(huán)的控制電路中,電流放大器通常選擇較大的增益,其好處是可以選擇一個(gè)較小的電阻來(lái)獲得足夠的檢測(cè)電壓,而檢測(cè)電阻小損耗也小。
電流檢測(cè)電路的實(shí)現(xiàn)方法主要有兩類:電阻檢測(cè)(resistivesensing)和電流互感器(currentsensetransformer)檢測(cè)。
電阻檢測(cè)有兩種,如圖1、圖2所示。
當(dāng)使用圖1直接檢測(cè)開(kāi)關(guān)管的電流時(shí)還必須在檢測(cè)電阻rs旁并聯(lián)一個(gè)小rc濾波電路,如圖3所示。因?yàn)楫?dāng)開(kāi)關(guān)管斷開(kāi)時(shí)集電極電容放電,在電流檢測(cè)電阻上產(chǎn)生瞬態(tài)電流尖峰,此尖峰的脈寬和幅值常足以使電流放大器鎖定,從而使pwm電路出錯(cuò)。
但是在實(shí)際電路設(shè)計(jì)時(shí),特別在設(shè)計(jì)大功率、大電流電路時(shí)采用電阻檢測(cè)的方法并不理想,因?yàn)闄z測(cè)電阻損耗大,達(dá)數(shù)瓦,甚至十幾瓦;而且很難找到幾百毫歐或幾十毫歐那么小的電阻。
實(shí)際上在大功率電路中實(shí)用的是電流互感器檢測(cè),如圖4所示。電流互感器檢測(cè)在保持良好波形的同時(shí)還具有較寬的帶寬,電流互感器還提供了電氣隔離,并且檢測(cè)電流小損耗也小,檢測(cè)電阻可選用稍大的值,如一二十歐的電阻。電流互感器將整個(gè)瞬態(tài)電流,包括直流分量耦合到副邊的檢測(cè)電阻上進(jìn)行測(cè)量,但同時(shí)也要求電流脈沖每次過(guò)零時(shí)磁芯能正常復(fù)位,尤其在平均電流模式控制中,電流互感器檢測(cè)更加適用,因?yàn)槠骄娏髂J娇刂浦斜粰z測(cè)的脈沖電流在每個(gè)開(kāi)關(guān)周期中都回零。
為了使電流互感器完全地磁復(fù)位,就需要給磁芯提供大小相等方向相反的伏秒積。在多數(shù)控制電路拓?fù)渲,電流過(guò)零時(shí)占空比接近100%,所以電流過(guò)零時(shí)磁復(fù)位時(shí)間在開(kāi)關(guān)周期中只占很小的比例。要在很短的時(shí)間內(nèi)復(fù)位磁芯,常需在電流互感器上加一個(gè)很大的反向偏壓,所以在設(shè)計(jì)電流互感器電路時(shí)應(yīng)使用高耐壓的二極管耦合在電流互感器副邊和檢測(cè)電阻之間。
3 防止電流檢測(cè)電路飽和的方法
如果電流互感器的磁芯不能復(fù)位,將導(dǎo)致磁芯飽和。電流互感器飽和是一個(gè)很嚴(yán)重的問(wèn)題,首先是不能正確測(cè)量電流值,從而不能進(jìn)行有效的電流控制;其次使電流誤差放大器總是“認(rèn)為”電流值小于設(shè)定值,這將使電流誤差放大器過(guò)補(bǔ)償,導(dǎo)致電流波形失真。
電流互感器檢測(cè)最適合應(yīng)用在對(duì)稱的電路,如推挽電路、全橋電路中。對(duì)于單端電路,特別是升壓電路,會(huì)產(chǎn)生一些我們必須關(guān)注的問(wèn)題。對(duì)于升壓電路,電感電流就是輸入電流,那么在電流連續(xù)工作方式時(shí),不管充電還是放電,電感電流總是大于零,即在直流值上疊加一個(gè)充放電的波形。因此電流互感器不能用于直接測(cè)量升壓電路的輸入電流,因?yàn)殡姼须娏鞑荒芑亓愣怪绷髦怠皝G失”了;并且電流互感器因不能磁復(fù)位而飽和,從而失去過(guò)流保護(hù)功能,輸出產(chǎn)生過(guò)壓等。在降壓電路中也存在同樣的問(wèn)題,電流互感器不能用于直接測(cè)量輸出電流。
解決這個(gè)問(wèn)題的方法是用兩個(gè)電流互感器分別測(cè)量開(kāi)關(guān)電流和二極管電流,如圖4所示實(shí)際的電感電流是這兩個(gè)電流的合成,這樣每個(gè)電流互感器就有足夠的時(shí)間來(lái)復(fù)位
熱門點(diǎn)擊
- 一種基于FPGA技術(shù)的虛擬邏輯分析儀的研究與
- 高端電流檢測(cè)的原理和電路
- 數(shù)字式溫度計(jì)DS18B20的特性及應(yīng)用
- 鋼琴琴鍵排列平整性的測(cè)量
- 電話報(bào)警系統(tǒng)的設(shè)計(jì)
- 基于條形碼技術(shù)的車間監(jiān)控系統(tǒng)的實(shí)時(shí)信息采集
- 一種高性能的VXI矩陣開(kāi)關(guān)模塊的研制
- 汽車故障自診斷系統(tǒng)與故障診斷儀V.A.G15
- 電視近距離人體信號(hào)檢測(cè)及保護(hù)電路研究
- 電力電纜接頭運(yùn)行溫度的在線監(jiān)視
推薦技術(shù)資料
- 滑雪繞樁機(jī)器人
- 本例是一款非常有趣,同時(shí)又有一定調(diào)試難度的玩法。EDE2116AB... [詳細(xì)]
- 100V高頻半橋N-溝道功率MOSFET驅(qū)動(dòng)
- 集成高端和低端 FET 和驅(qū)動(dòng)
- 柵極驅(qū)動(dòng)單片半橋芯片MP869
- 數(shù)字恒定導(dǎo)通時(shí)間控制模式(COT)應(yīng)用探究
- 高效率 (CSP/QFN/BG
- IC 工藝、封裝技術(shù)、單片設(shè)
- 多媒體協(xié)處理器SM501在嵌入式系統(tǒng)中的應(yīng)用
- 基于IEEE802.11b的EPA溫度變送器
- QUICCEngine新引擎推動(dòng)IP網(wǎng)絡(luò)革新
- SoC面世八年后的產(chǎn)業(yè)機(jī)遇
- MPC8xx系列處理器的嵌入式系統(tǒng)電源設(shè)計(jì)
- dsPIC及其在交流變頻調(diào)速中的應(yīng)用研究