時(shí)差法超聲測距儀的研制
發(fā)布時(shí)間:2007/4/23 0:00:00 訪問次數(shù):544
關(guān)鍵詞:單片機(jī);超聲波;測距
1 引言
超聲波是由機(jī)械振動(dòng)產(chǎn)生的,可在不同介質(zhì)中以不同的速度傳播,具有定向性好、能量集中、傳輸過程中衰減較小、反射能力較強(qiáng)等優(yōu)點(diǎn)。超聲波傳感器可廣泛應(yīng)用于非接觸式檢測方法,它不受光線、被測物顏色等影響,對(duì)惡劣的工作環(huán)境具有一定的適應(yīng)能力,因此在水文液位測量、車輛自動(dòng)導(dǎo)航、物體識(shí)別等領(lǐng)域有著廣泛的應(yīng)用。本文著重介紹脈沖回波法的超聲空氣測距原理及系統(tǒng)構(gòu)成。
傳感器,它每次發(fā)射10個(gè)脈沖。當(dāng)?shù)谝粋(gè)超聲波脈沖發(fā)射后,計(jì)數(shù)器開始計(jì)數(shù),在檢測到第一個(gè)回波脈沖的瞬間,計(jì)數(shù)器停止計(jì)數(shù),這樣就能夠得到從發(fā)射到接收的時(shí)間差Δt;同時(shí)溫度采集電路也將現(xiàn)場環(huán)境溫度數(shù)據(jù)采集到單片機(jī)中,以在計(jì)算距離時(shí)對(duì)超聲波傳播速度進(jìn)行修正。根據(jù)所采集到的數(shù)據(jù)最終利用單片機(jī)計(jì)算出被測距離,并由顯示器顯示出來。
2.1 單片機(jī)與各部分電路的接口
本系統(tǒng)以AT89C2051單片機(jī)為核心來實(shí)現(xiàn)對(duì)各部分電路的控制和響應(yīng)。在進(jìn)行硬件設(shè)計(jì)時(shí),AT89C2051的串行口RXD、TXD分別與顯示電路的RXD和TXD相連,構(gòu)成串行靜態(tài)顯示電路;定時(shí)/記數(shù)器T0與V/F轉(zhuǎn)換器LM331的輸出端相連,實(shí)現(xiàn)頻率采集功能;P1.7與CMOS多諧振蕩器的控制端相連,可通過軟件使P1.7口輸出高電平或低電平,從而控制超聲波的發(fā)射;P1.6通過一個(gè)開關(guān)二極管IN4148與比較器的基準(zhǔn)電壓產(chǎn)生電路控制端連接,發(fā)射超聲波時(shí)置P1.6 為“1”;P1.2口連接比較器LM324的輸出端,這樣,通過掃描P1.2口就可以判斷是否接收到回波。
2.2 超聲波發(fā)射及驅(qū)動(dòng)電路
超聲波發(fā)射及驅(qū)動(dòng)電路如圖2所示,由與非門CD4011組成的CMOS多諧振蕩器產(chǎn)生40kHz的振蕩源,為了控制振蕩的產(chǎn)生或者停止,把第一個(gè)門U1的一個(gè)輸入端作為控制端C,當(dāng)C=“0”時(shí),振蕩停止;C=“1”時(shí),產(chǎn)生振蕩。將C端與AT89C2051單片機(jī)的P1.7口連接后,就可通過微處理器來控制超聲波的發(fā)射。需要注意的是,控制脈沖的頻率(P1.7口高、低電平的變化頻率)必須遠(yuǎn)低于多諧振蕩器的振蕩頻率。該電路的振蕩周期可由以下公式得出:
t=2.2RtCt
由于超聲波的傳播距離與它的振幅成正比,為了使測距范圍足夠遠(yuǎn),可對(duì)振蕩信號(hào)進(jìn)行功率放大后再加在超聲波傳感器上。本電路采用CD4049組成驅(qū)動(dòng)電路可將振蕩信號(hào)的幅度放大一倍,從而增加了超聲波的傳播距離,擴(kuò)大了測距范圍。
電阻下降導(dǎo)致超聲波傳感器轉(zhuǎn)換性能變壞,不能長時(shí)間的對(duì)傳感器施加直流電壓。因此在電路中串入一個(gè)耦合電容C1,通過它可以將直流電壓轉(zhuǎn)換為等幅的交流電壓,從而保證測距儀能夠長時(shí)間可靠、穩(wěn)定的工作。
2.3 超聲波接收及過零檢測電路
超聲波接收及過零檢測電路原理圖如圖3所示。由于超聲波在空氣中傳播時(shí),其能量的衰減程度與傳播距離成正比,所以超聲波傳感器接收信號(hào)一般在1mV~1V之間。為了便于使用,接收電路要提供100倍以上的放大增益。此外,接收傳感器輸出的是正弦波信號(hào),這就需要設(shè)計(jì)交流放大電路。本系統(tǒng)選用兩片OP07組成兩級(jí)放大電路,對(duì)接收到的超聲波信號(hào)進(jìn)行放大處理。信號(hào)經(jīng)過放大以后,輸入LM324的正端并與基準(zhǔn)電壓相比較,使LM324的輸出端(與單片機(jī)的P1.2口連接)輸出高電平,單片機(jī)接收到回波后立即停止記時(shí)。
在單片機(jī)控制超聲波發(fā)射(P1.7置“1”)的同時(shí),P1.6輸出一個(gè)高電平,給電容C5充電,并經(jīng)一串聯(lián)分壓網(wǎng)絡(luò)將該電壓輸出到比較器的負(fù)端,這樣可以有效抑制由于超聲波發(fā)射器發(fā)射的超聲波直接輻射到接收器而導(dǎo)致的比較器誤反轉(zhuǎn),從而得到錯(cuò)誤檢測信號(hào)。發(fā)射結(jié)束后P1.6口由高電平翻轉(zhuǎn)為低電平,比較器的負(fù)端也為低電平,若LM324的輸出端為高電平,則表明已接收到回波信號(hào)。
2.4 溫度采集及V/F轉(zhuǎn)換電路
時(shí)差法超聲測距儀的研制 [日期:2005-6-2] 來源:國外電子元器件 作者:南昌航空工業(yè)學(xué)院電子系 趙 珂 [字體:單片機(jī)、超聲波發(fā)射電路、超聲波接收放大電路、環(huán)境溫度采集電路及顯示電路組成。該測距儀具有集成度高、反應(yīng)速度快,測量精度高、性能價(jià)格比高等特點(diǎn)。文中主要介紹了脈沖回波法的超聲空氣測距原理及其系統(tǒng)構(gòu)成。
關(guān)鍵詞:單片機(jī);超聲波;測距
1 引言
超聲波是由機(jī)械振動(dòng)產(chǎn)生的,可在不同介質(zhì)中以不同的速度傳播,具有定向性好、能量集中、傳輸過程中衰減較小、反射能力較強(qiáng)等優(yōu)點(diǎn)。超聲波傳感器可廣泛應(yīng)用于非接觸式檢測方法,它不受光線、被測物顏色等影響,對(duì)惡劣的工作環(huán)境具有一定的適應(yīng)能力,因此在水文液位測量、車輛自動(dòng)導(dǎo)航、物體識(shí)別等領(lǐng)域有著廣泛的應(yīng)用。本文著重介紹脈沖回波法的超聲空氣測距原理及系統(tǒng)構(gòu)成。
傳感器,它每次發(fā)射10個(gè)脈沖。當(dāng)?shù)谝粋(gè)超聲波脈沖發(fā)射后,計(jì)數(shù)器開始計(jì)數(shù),在檢測到第一個(gè)回波脈沖的瞬間,計(jì)數(shù)器停止計(jì)數(shù),這樣就能夠得到從發(fā)射到接收的時(shí)間差Δt;同時(shí)溫度采集電路也將現(xiàn)場環(huán)境溫度數(shù)據(jù)采集到單片機(jī)中,以在計(jì)算距離時(shí)對(duì)超聲波傳播速度進(jìn)行修正。根據(jù)所采集到的數(shù)據(jù)最終利用單片機(jī)計(jì)算出被測距離,并由顯示器顯示出來。
2.1 單片機(jī)與各部分電路的接口
本系統(tǒng)以AT89C2051單片機(jī)為核心來實(shí)現(xiàn)對(duì)各部分電路的控制和響應(yīng)。在進(jìn)行硬件設(shè)計(jì)時(shí),AT89C2051的串行口RXD、TXD分別與顯示電路的RXD和TXD相連,構(gòu)成串行靜態(tài)顯示電路;定時(shí)/記數(shù)器T0與V/F轉(zhuǎn)換器LM331的輸出端相連,實(shí)現(xiàn)頻率采集功能;P1.7與CMOS多諧振蕩器的控制端相連,可通過軟件使P1.7口輸出高電平或低電平,從而控制超聲波的發(fā)射;P1.6通過一個(gè)開關(guān)二極管IN4148與比較器的基準(zhǔn)電壓產(chǎn)生電路控制端連接,發(fā)射超聲波時(shí)置P1.6 為“1”;P1.2口連接比較器LM324的輸出端,這樣,通過掃描P1.2口就可以判斷是否接收到回波。
2.2 超聲波發(fā)射及驅(qū)動(dòng)電路
超聲波發(fā)射及驅(qū)動(dòng)電路如圖2所示,由與非門CD4011組成的CMOS多諧振蕩器產(chǎn)生40kHz的振蕩源,為了控制振蕩的產(chǎn)生或者停止,把第一個(gè)門U1的一個(gè)輸入端作為控制端C,當(dāng)C=“0”時(shí),振蕩停止;C=“1”時(shí),產(chǎn)生振蕩。將C端與AT89C2051單片機(jī)的P1.7口連接后,就可通過微處理器來控制超聲波的發(fā)射。需要注意的是,控制脈沖的頻率(P1.7口高、低電平的變化頻率)必須遠(yuǎn)低于多諧振蕩器的振蕩頻率。該電路的振蕩周期可由以下公式得出:
t=2.2RtCt
由于超聲波的傳播距離與它的振幅成正比,為了使測距范圍足夠遠(yuǎn),可對(duì)振蕩信號(hào)進(jìn)行功率放大后再加在超聲波傳感器上。本電路采用CD4049組成驅(qū)動(dòng)電路可將振蕩信號(hào)的幅度放大一倍,從而增加了超聲波的傳播距離,擴(kuò)大了測距范圍。
電阻下降導(dǎo)致超聲波傳感器轉(zhuǎn)換性能變壞,不能長時(shí)間的對(duì)傳感器施加直流電壓。因此在電路中串入一個(gè)耦合電容C1,通過它可以將直流電壓轉(zhuǎn)換為等幅的交流電壓,從而保證測距儀能夠長時(shí)間可靠、穩(wěn)定的工作。
2.3 超聲波接收及過零檢測電路
超聲波接收及過零檢測電路原理圖如圖3所示。由于超聲波在空氣中傳播時(shí),其能量的衰減程度與傳播距離成正比,所以超聲波傳感器接收信號(hào)一般在1mV~1V之間。為了便于使用,接收電路要提供100倍以上的放大增益。此外,接收傳感器輸出的是正弦波信號(hào),這就需要設(shè)計(jì)交流放大電路。本系統(tǒng)選用兩片OP07組成兩級(jí)放大電路,對(duì)接收到的超聲波信號(hào)進(jìn)行放大處理。信號(hào)經(jīng)過放大以后,輸入LM324的正端并與基準(zhǔn)電壓相比較,使LM324的輸出端(與單片機(jī)的P1.2口連接)輸出高電平,單片機(jī)接收到回波后立即停止記時(shí)。
在單片機(jī)控制超聲波發(fā)射(P1.7置“1”)的同時(shí),P1.6輸出一個(gè)高電平,給電容C5充電,并經(jīng)一串聯(lián)分壓網(wǎng)絡(luò)將該電壓輸出到比較器的負(fù)端,這樣可以有效抑制由于超聲波發(fā)射器發(fā)射的超聲波直接輻射到接收器而導(dǎo)致的比較器誤反轉(zhuǎn),從而得到錯(cuò)誤檢測信號(hào)。發(fā)射結(jié)束后P1.6口由高電平翻轉(zhuǎn)為低電平,比較器的負(fù)端也為低電平,若LM324的輸出端為高電平,則表明已接收到回波信號(hào)。
2.4 溫度采集及V/F轉(zhuǎn)換電路
熱門點(diǎn)擊
- 七號(hào)信令集中監(jiān)測系統(tǒng)消息解碼實(shí)現(xiàn)
- 電路在線維修測試儀上的ASA(VI曲線)測試
- EMG在語音信號(hào)識(shí)別中的應(yīng)用
- 一種基于圖像處理的自動(dòng)調(diào)焦系統(tǒng)
- 雙口RAM通訊在電機(jī)控制中的應(yīng)用
- 二相步進(jìn)電機(jī)驅(qū)動(dòng)芯片TA8435H及其應(yīng)用
- 多功能車輛總線控制器芯片(MVBC)的幀收發(fā)
- 煤礦井下采區(qū)無人值守變電所微機(jī)保護(hù)系統(tǒng)的研究
- CD4051和AD595制作的溫度采集儀
- 基于MSP430和USB的數(shù)據(jù)采集系統(tǒng)
推薦技術(shù)資料
- 滑雪繞樁機(jī)器人
- 本例是一款非常有趣,同時(shí)又有一定調(diào)試難度的玩法。EDE2116AB... [詳細(xì)]
- 電源管理 IC (PMIC)&
- I2C 接口和 PmBUS 以及 OTP/M
- MOSFET 和柵極驅(qū)動(dòng)器單
- 數(shù)字恒定導(dǎo)通時(shí)間控制模式(CO
- Power Management Buck/
- 反激變換器傳導(dǎo)和輻射電磁干擾分析和抑制技術(shù)
- 多媒體協(xié)處理器SM501在嵌入式系統(tǒng)中的應(yīng)用
- 基于IEEE802.11b的EPA溫度變送器
- QUICCEngine新引擎推動(dòng)IP網(wǎng)絡(luò)革新
- SoC面世八年后的產(chǎn)業(yè)機(jī)遇
- MPC8xx系列處理器的嵌入式系統(tǒng)電源設(shè)計(jì)
- dsPIC及其在交流變頻調(diào)速中的應(yīng)用研究