基于積累型MOS變?nèi)莨艿纳漕l壓控振蕩器設(shè)計(圖)
發(fā)布時間:2007/8/15 0:00:00 訪問次數(shù):661
引言
隨著移動通信技術(shù)的發(fā)展,射頻(RF)電路的研究引起了廣泛的重視。采用標準CMOS工藝實現(xiàn)壓控振蕩器(VCO),是實現(xiàn)RF CMOS集成收發(fā)機的關(guān)鍵。過去的VCO電路大多采用反向偏壓的變?nèi)荻䴓O管作為壓控器件,然而在用實際工藝實現(xiàn)電路時,會發(fā)現(xiàn)變?nèi)荻䴓O管的品質(zhì)因數(shù)通常都很小,這將影響到電路的性能。于是,人們便嘗試采用其它可以用CMOS工藝實現(xiàn)的器件來代替一般的變?nèi)荻䴓O管,MOS變?nèi)莨鼙銘?yīng)運而生了。
MOS變?nèi)莨?BR>將MOS晶體管的漏,源和襯底短接便可成為一個簡單的MOS電容,其電容值隨柵極與襯底之間的電壓VBG變化而變化。在PMOS電容中,反型載流子溝道在VBG大于閾值電壓絕對值時建立,當VBG遠遠大于閾值電壓絕對值時,PMOS電容工作在強反型區(qū)域。另一方面,在柵電壓VG大于襯底電壓VB時,PMOS電容工作在積累區(qū),此時柵氧化層與半導(dǎo)體之間的界面電壓為正且能使電子可以自由移動。這樣,在反型區(qū)和積累區(qū)的PMOS電容值Cmos等于Cox(氧化層電容)。
在強反型區(qū)和積累區(qū)之間還有三個工作區(qū)域:中反型區(qū),弱反型區(qū)和耗盡區(qū)。這些工作區(qū)域中只有很少的移動載流子,使得Cmos電容值減小(比Cox。藭r的Cmos可以看成Cox和Cb與Ci的并聯(lián)電容串聯(lián)構(gòu)成。Cb表示耗盡區(qū)域電容的閉環(huán),而Ci與柵氧化層界面的空穴數(shù)量變化量相關(guān)。如果Cb(Ci)占主導(dǎo)地位,PMOS器件工作在耗盡(中反型)區(qū);如果兩個電容都不占主導(dǎo)地位,PMOS器件工作在弱反型區(qū)。Cmos電容值隨VBG變化的曲線如圖1所示。
圖1 B=D=S的PMOS電容的調(diào)制特性曲線
工作在強反型區(qū)的PMOS的溝道寄生電阻值可以由下式得出:
(1)
式中,W,L和kp分別是PMOS晶體管的寬度,長度和增益因子。值得注意的是,隨著VBG接近閾值電壓的絕對值,Rmos逐步增加,在VBG等于閾值電壓絕對值時Rmos為無限大。這個公式基于了最簡單的PMOS模型,事實上,隨著空穴濃度的穩(wěn)步減少,Rmos在整個中反型區(qū)會保持有限值。
反型與積累型MOS變?nèi)莨?BR>通過上面的分析,我們知道普通MOS變?nèi)莨苷{(diào)諧特性是非單調(diào)的,目前有兩種方法可以獲得單調(diào)的調(diào)諧特性。
一種方法是確保晶體管在VG變化范圍大的情況下不進入積累區(qū),這可通過將襯底與柵源結(jié)斷開而與電路中的最高直流電壓短接來完成(例如,電源電壓Vdd)。
圖2是兩個相同尺寸MOS電容的Cmos-VSG特性曲線的相互對比。
圖2 反型MOS電容的調(diào)制特性曲線
很明顯反型MOS電容的調(diào)諧范圍要比普通MOS電容寬,前者只工作在強,中和弱反型區(qū),而從不進入積累區(qū)。
更好的方法是應(yīng)用只工作在耗盡區(qū)和積累區(qū)的MOS器件,這樣會帶來更大的調(diào)諧范圍并且有更低的寄生電阻,即意味著更高的品質(zhì)因數(shù),原因是其耗盡區(qū)和積累區(qū)的電子是多子載流子,比空穴的遷移率高約三倍多。要得到一個積累型MOS電容,必須確保強反型區(qū),中反型區(qū)和弱反型區(qū)被禁止,這就需要抑制任何空穴注入MOS的溝道。方法是將MOS器件中的漏源結(jié)的p+摻雜去掉,同時在原來漏源結(jié)的位置做n+摻雜的襯底接觸,如圖3所示。
圖3 積累型MOS電容剖面示意圖
這樣就將n阱的寄生電阻減少到最小。積累型MOS電容和普通MOS電容的調(diào)諧曲線如圖4所示。
圖4 積累型MOS電容的調(diào)制特性曲線
可以看到積累型MOS電容良好的單調(diào)性。值得注意的是在設(shè)計積累型MOS電容的過程中沒有引入任何附加工藝流程。
設(shè)計與仿真結(jié)果
圖5 VCO的電路結(jié)構(gòu)圖
筆者所采用的VCO電路結(jié)構(gòu)如圖5所示。這是標準的對稱CMOS結(jié)構(gòu),兩個變?nèi)莨軐ΨQ連接,減小了兩端振蕩時電位變化對變?nèi)莨茈娙葜档挠绊,提高了頻譜純度。為了保證匹配良好,電感要采用相同的雙電感對稱連接。此外,由于LC振蕩回路由兩個尺寸非常大的片內(nèi)集成電感和兩個同樣有較大尺寸的積累型MOS變?nèi)莨芙M成,較高的損耗使得品質(zhì)因數(shù)不高,這就需要較大的負跨導(dǎo)來維持振蕩持續(xù)進行;并且等效負跨導(dǎo)的絕對值必須比維持等幅振蕩時所需要的跨導(dǎo)值大才能保證起振,所以兩對耦合晶體管需要設(shè)置較大的寬長比,但大的寬長比同時帶來較大的寄生效應(yīng),造成相位噪聲和調(diào)諧范圍受到影響,最終在底端用兩個NMOS晶體管形成負電阻以補償VCO的損耗。根據(jù)小信號模型分析,忽略各種寄生及高階效應(yīng),可以估算得到等效負電阻RG的絕對值大小為(設(shè)兩個有源器件跨導(dǎo)分別為gM1,gM2):
(2)
頂端的PMOS晶體管提供偏置電流,這種結(jié)構(gòu)所需的電源電壓很低。
整個設(shè)計基于TSMC的0.35μm鍺硅射頻工藝模型PDK,共有三層金屬。其中,電感為平面螺旋八邊形,由頂層金屬繞制而成。選取電感值
引言
隨著移動通信技術(shù)的發(fā)展,射頻(RF)電路的研究引起了廣泛的重視。采用標準CMOS工藝實現(xiàn)壓控振蕩器(VCO),是實現(xiàn)RF CMOS集成收發(fā)機的關(guān)鍵。過去的VCO電路大多采用反向偏壓的變?nèi)荻䴓O管作為壓控器件,然而在用實際工藝實現(xiàn)電路時,會發(fā)現(xiàn)變?nèi)荻䴓O管的品質(zhì)因數(shù)通常都很小,這將影響到電路的性能。于是,人們便嘗試采用其它可以用CMOS工藝實現(xiàn)的器件來代替一般的變?nèi)荻䴓O管,MOS變?nèi)莨鼙銘?yīng)運而生了。
MOS變?nèi)莨?BR>將MOS晶體管的漏,源和襯底短接便可成為一個簡單的MOS電容,其電容值隨柵極與襯底之間的電壓VBG變化而變化。在PMOS電容中,反型載流子溝道在VBG大于閾值電壓絕對值時建立,當VBG遠遠大于閾值電壓絕對值時,PMOS電容工作在強反型區(qū)域。另一方面,在柵電壓VG大于襯底電壓VB時,PMOS電容工作在積累區(qū),此時柵氧化層與半導(dǎo)體之間的界面電壓為正且能使電子可以自由移動。這樣,在反型區(qū)和積累區(qū)的PMOS電容值Cmos等于Cox(氧化層電容)。
在強反型區(qū)和積累區(qū)之間還有三個工作區(qū)域:中反型區(qū),弱反型區(qū)和耗盡區(qū)。這些工作區(qū)域中只有很少的移動載流子,使得Cmos電容值減。ū菴ox小),此時的Cmos可以看成Cox和Cb與Ci的并聯(lián)電容串聯(lián)構(gòu)成。Cb表示耗盡區(qū)域電容的閉環(huán),而Ci與柵氧化層界面的空穴數(shù)量變化量相關(guān)。如果Cb(Ci)占主導(dǎo)地位,PMOS器件工作在耗盡(中反型)區(qū);如果兩個電容都不占主導(dǎo)地位,PMOS器件工作在弱反型區(qū)。Cmos電容值隨VBG變化的曲線如圖1所示。
圖1 B=D=S的PMOS電容的調(diào)制特性曲線
工作在強反型區(qū)的PMOS的溝道寄生電阻值可以由下式得出:
(1)
式中,W,L和kp分別是PMOS晶體管的寬度,長度和增益因子。值得注意的是,隨著VBG接近閾值電壓的絕對值,Rmos逐步增加,在VBG等于閾值電壓絕對值時Rmos為無限大。這個公式基于了最簡單的PMOS模型,事實上,隨著空穴濃度的穩(wěn)步減少,Rmos在整個中反型區(qū)會保持有限值。
反型與積累型MOS變?nèi)莨?BR>通過上面的分析,我們知道普通MOS變?nèi)莨苷{(diào)諧特性是非單調(diào)的,目前有兩種方法可以獲得單調(diào)的調(diào)諧特性。
一種方法是確保晶體管在VG變化范圍大的情況下不進入積累區(qū),這可通過將襯底與柵源結(jié)斷開而與電路中的最高直流電壓短接來完成(例如,電源電壓Vdd)。
圖2是兩個相同尺寸MOS電容的Cmos-VSG特性曲線的相互對比。
圖2 反型MOS電容的調(diào)制特性曲線
很明顯反型MOS電容的調(diào)諧范圍要比普通MOS電容寬,前者只工作在強,中和弱反型區(qū),而從不進入積累區(qū)。
更好的方法是應(yīng)用只工作在耗盡區(qū)和積累區(qū)的MOS器件,這樣會帶來更大的調(diào)諧范圍并且有更低的寄生電阻,即意味著更高的品質(zhì)因數(shù),原因是其耗盡區(qū)和積累區(qū)的電子是多子載流子,比空穴的遷移率高約三倍多。要得到一個積累型MOS電容,必須確保強反型區(qū),中反型區(qū)和弱反型區(qū)被禁止,這就需要抑制任何空穴注入MOS的溝道。方法是將MOS器件中的漏源結(jié)的p+摻雜去掉,同時在原來漏源結(jié)的位置做n+摻雜的襯底接觸,如圖3所示。
圖3 積累型MOS電容剖面示意圖
這樣就將n阱的寄生電阻減少到最小。積累型MOS電容和普通MOS電容的調(diào)諧曲線如圖4所示。
圖4 積累型MOS電容的調(diào)制特性曲線
可以看到積累型MOS電容良好的單調(diào)性。值得注意的是在設(shè)計積累型MOS電容的過程中沒有引入任何附加工藝流程。
設(shè)計與仿真結(jié)果
圖5 VCO的電路結(jié)構(gòu)圖
筆者所采用的VCO電路結(jié)構(gòu)如圖5所示。這是標準的對稱CMOS結(jié)構(gòu),兩個變?nèi)莨軐ΨQ連接,減小了兩端振蕩時電位變化對變?nèi)莨茈娙葜档挠绊懀岣吡祟l譜純度。為了保證匹配良好,電感要采用相同的雙電感對稱連接。此外,由于LC振蕩回路由兩個尺寸非常大的片內(nèi)集成電感和兩個同樣有較大尺寸的積累型MOS變?nèi)莨芙M成,較高的損耗使得品質(zhì)因數(shù)不高,這就需要較大的負跨導(dǎo)來維持振蕩持續(xù)進行;并且等效負跨導(dǎo)的絕對值必須比維持等幅振蕩時所需要的跨導(dǎo)值大才能保證起振,所以兩對耦合晶體管需要設(shè)置較大的寬長比,但大的寬長比同時帶來較大的寄生效應(yīng),造成相位噪聲和調(diào)諧范圍受到影響,最終在底端用兩個NMOS晶體管形成負電阻以補償VCO的損耗。根據(jù)小信號模型分析,忽略各種寄生及高階效應(yīng),可以估算得到等效負電阻RG的絕對值大小為(設(shè)兩個有源器件跨導(dǎo)分別為gM1,gM2):
(2)
頂端的PMOS晶體管提供偏置電流,這種結(jié)構(gòu)所需的電源電壓很低。
整個設(shè)計基于TSMC的0.35μm鍺硅射頻工藝模型PDK,共有三層金屬。其中,電感為平面螺旋八邊形,由頂層金屬繞制而成。選取電感值
熱門點擊
- 光伏發(fā)電系統(tǒng)最大功率點跟蹤控制
- BA8206 BA4遙控風(fēng)扇控制器的新應(yīng)用
- CAN總線在混和動力汽車電機控制系統(tǒng)中的應(yīng)用
- 基于TMS320F240的多種PWM實現(xiàn)
- 真有效值直流轉(zhuǎn)換芯片AD536A在直流點焊微
- 由單片機和多片DS1820組成的多點溫度測控
- KEELOQ技術(shù)的軟件實現(xiàn)
- 帶故障檢測的PWM風(fēng)扇轉(zhuǎn)速控制器MC642
- ZMD31050在數(shù)字式氣壓傳感器系統(tǒng)中的應(yīng)
- 基于英飛凌智能傳感器SP12/SP30的TP
推薦技術(shù)資料
- DFRobot—玩的就是
- 如果說新車間的特點是“靈動”,F(xiàn)QPF12N60C那么... [詳細]
- CV/CC InnoSwitch3-AQ 開
- URF1DxxM-60WR3系
- 1-6W URA24xxN-x
- 閉環(huán)磁通門信號調(diào)節(jié)芯片NSDRV401
- SK-RiSC-SOM-H27X-V1.1應(yīng)
- RISC技術(shù)8位微控制器參數(shù)設(shè)
- 多媒體協(xié)處理器SM501在嵌入式系統(tǒng)中的應(yīng)用
- 基于IEEE802.11b的EPA溫度變送器
- QUICCEngine新引擎推動IP網(wǎng)絡(luò)革新
- SoC面世八年后的產(chǎn)業(yè)機遇
- MPC8xx系列處理器的嵌入式系統(tǒng)電源設(shè)計
- dsPIC及其在交流變頻調(diào)速中的應(yīng)用研究