無(wú)刷直流電機(jī)的特點(diǎn)
發(fā)布時(shí)間:2008/10/27 0:00:00 訪(fǎng)問(wèn)次數(shù):507
1831年,法拉第發(fā)現(xiàn)了電磁感應(yīng)現(xiàn)象,奠定了現(xiàn)代電機(jī)的基本理論基礎(chǔ)。從19世紀(jì)40年代研制成功第一臺(tái)直流電機(jī),經(jīng)過(guò)大約17年的時(shí)間,直流電機(jī)技術(shù)才趨于成熟。隨著應(yīng)用領(lǐng)域的擴(kuò)大,對(duì)直流電機(jī)的要求也就越來(lái)越高,有接觸的機(jī)械換向裝置限制了有刷直流電機(jī)在許多場(chǎng)合中的應(yīng)用。為了取代有刷直流電機(jī)的電刷-換向器結(jié)構(gòu)的機(jī)械接觸裝置,人們?cè)鴮?duì)此作過(guò)長(zhǎng)期的探索。1915年,美國(guó)人langnall發(fā)明了帶控制柵極的汞弧整流器,制成了由直流變交流的逆變裝置。20世紀(jì)30年代,有人提出用離子裝置實(shí)現(xiàn)電機(jī)的定子繞組按轉(zhuǎn)子位置換接的所謂換向器電機(jī),但此種電機(jī)由于可靠性差、效率低、整個(gè)裝置笨重又復(fù)雜而無(wú)實(shí)用價(jià)值。
科學(xué)技術(shù)的迅猛發(fā)展,帶來(lái)了電力半導(dǎo)體技術(shù)的飛躍。開(kāi)關(guān)型晶體管的研制成功,為創(chuàng)造新型直流電機(jī)——無(wú)刷直流電機(jī)帶來(lái)了生機(jī)。1955年,美國(guó)人harrison首次提出了用晶體管換相線(xiàn)路代替電機(jī)電刷接觸的思想,這就是無(wú)刷直流電機(jī)的雛形。它由功率放大部分、信號(hào)檢測(cè)部分、磁極體和晶體管開(kāi)關(guān)電路等組成,其工作原理是當(dāng)轉(zhuǎn)子旋轉(zhuǎn)時(shí),在信號(hào)繞組中感應(yīng)出周期性的信號(hào)電動(dòng)勢(shì),此信號(hào)電動(dòng)勢(shì)分別使晶體管輪流導(dǎo)通實(shí)現(xiàn)換相。問(wèn)題在于,首先,當(dāng)轉(zhuǎn)子不轉(zhuǎn)時(shí),信號(hào)繞組內(nèi)不能產(chǎn)生感應(yīng)電動(dòng)勢(shì),晶體管無(wú)偏置,功率繞組也就無(wú)法饋電,所以這種無(wú)刷直流電機(jī)沒(méi)有起動(dòng)轉(zhuǎn)矩;其次,由于信號(hào)電動(dòng)勢(shì)的前沿陡度不大,晶體管的功耗大。為了克服這些弊病,人們采用了離心裝置的換向器,或采用在定子上放置輔助磁鋼的方法來(lái)保證電機(jī)可靠地起動(dòng)。但前者結(jié)構(gòu)復(fù)雜,而后者需要附加的起動(dòng)脈沖。其后,經(jīng)過(guò)反復(fù)的試驗(yàn)和不斷的實(shí)踐,人們終于找到了用位置傳感器和電子換相線(xiàn)路來(lái)代替有刷直流電機(jī)的機(jī)械換向裝置,從而為直流電機(jī)的發(fā)展開(kāi)辟了新的途徑。⒛世紀(jì)60年代初期,接近開(kāi)關(guān)式位置傳感器、電磁諧振式位置傳感器和高頻耦合式位置傳感器相繼問(wèn)世,之后又出現(xiàn)了磁電耦合式和光電式位置傳感器。半導(dǎo)體技術(shù)的飛速發(fā)展,使人們對(duì)1879年美國(guó)人霍爾發(fā)現(xiàn)的霍爾效應(yīng)再次發(fā)生興趣,經(jīng)過(guò)多年的努力,終于在1962年試制成功了借助霍爾元件(霍爾效應(yīng)轉(zhuǎn)子位置傳感器)來(lái)實(shí)現(xiàn)換相的無(wú)刷直流電機(jī)。在⒛世紀(jì)70年代初期,又試制成功了借助比霍爾元件的靈敏度高千倍左右的磁敏二極管實(shí)現(xiàn)換相的無(wú)刷直流電機(jī)。在試制各種類(lèi)型的位置傳感器的同時(shí),人們?cè)噲D尋求一種沒(méi)有附加位置傳感器結(jié)構(gòu)的無(wú)刷直流電機(jī)。1968年,德國(guó)人w·mieslinger提出采用電容移相實(shí)現(xiàn)換相的新方法。在此基礎(chǔ)上,德國(guó)人r·hanitsch試制成功借助數(shù)字式環(huán)形分配器和過(guò)零鑒別器的組合來(lái)實(shí)現(xiàn)換相的無(wú)位置傳感器無(wú)刷直流電機(jī)。
無(wú)刷直流電機(jī)按照工作特性,可以分為兩大類(lèi):
1.具有直流電機(jī)特性的無(wú)刷直流電機(jī)
反電動(dòng)勢(shì)波形和供電電流波形都是矩形波的電機(jī),稱(chēng)為矩形波同步電機(jī),又稱(chēng)無(wú)刷直流電機(jī)。這類(lèi)電機(jī)由直流電源供電,借助位置傳感器來(lái)檢測(cè)主轉(zhuǎn)子的位置,由所檢測(cè)出的信號(hào)去觸發(fā)相應(yīng)的電子換相線(xiàn)路以實(shí)現(xiàn)無(wú)接觸式換相。顯然,這種無(wú)刷直流電機(jī)具有有刷直流電機(jī)的各種運(yùn)行特性。
2.具有交流電機(jī)特性的無(wú)刷直流電機(jī)
反電動(dòng)勢(shì)波形和供電電流波形都是正弦波的電機(jī),稱(chēng)為正弦波同步電機(jī)。這類(lèi)電機(jī)也由直流電源供電,但通過(guò)逆變器將直流電變換成交流電,然后去驅(qū)動(dòng)一般的同步電機(jī)。因此,它們具有同步電機(jī)的各種運(yùn)行特性。
嚴(yán)格來(lái)說(shuō),只有具有直流電機(jī)特性的電機(jī)才能稱(chēng)為無(wú)刷直流電機(jī),本書(shū)主要討論這種類(lèi)型的無(wú)刷直流電機(jī)。
歡迎轉(zhuǎn)載,信息來(lái)自維庫(kù)電子市場(chǎng)網(wǎng)(www.dzsc.com)
1831年,法拉第發(fā)現(xiàn)了電磁感應(yīng)現(xiàn)象,奠定了現(xiàn)代電機(jī)的基本理論基礎(chǔ)。從19世紀(jì)40年代研制成功第一臺(tái)直流電機(jī),經(jīng)過(guò)大約17年的時(shí)間,直流電機(jī)技術(shù)才趨于成熟。隨著應(yīng)用領(lǐng)域的擴(kuò)大,對(duì)直流電機(jī)的要求也就越來(lái)越高,有接觸的機(jī)械換向裝置限制了有刷直流電機(jī)在許多場(chǎng)合中的應(yīng)用。為了取代有刷直流電機(jī)的電刷-換向器結(jié)構(gòu)的機(jī)械接觸裝置,人們?cè)鴮?duì)此作過(guò)長(zhǎng)期的探索。1915年,美國(guó)人langnall發(fā)明了帶控制柵極的汞弧整流器,制成了由直流變交流的逆變裝置。20世紀(jì)30年代,有人提出用離子裝置實(shí)現(xiàn)電機(jī)的定子繞組按轉(zhuǎn)子位置換接的所謂換向器電機(jī),但此種電機(jī)由于可靠性差、效率低、整個(gè)裝置笨重又復(fù)雜而無(wú)實(shí)用價(jià)值。
科學(xué)技術(shù)的迅猛發(fā)展,帶來(lái)了電力半導(dǎo)體技術(shù)的飛躍。開(kāi)關(guān)型晶體管的研制成功,為創(chuàng)造新型直流電機(jī)——無(wú)刷直流電機(jī)帶來(lái)了生機(jī)。1955年,美國(guó)人harrison首次提出了用晶體管換相線(xiàn)路代替電機(jī)電刷接觸的思想,這就是無(wú)刷直流電機(jī)的雛形。它由功率放大部分、信號(hào)檢測(cè)部分、磁極體和晶體管開(kāi)關(guān)電路等組成,其工作原理是當(dāng)轉(zhuǎn)子旋轉(zhuǎn)時(shí),在信號(hào)繞組中感應(yīng)出周期性的信號(hào)電動(dòng)勢(shì),此信號(hào)電動(dòng)勢(shì)分別使晶體管輪流導(dǎo)通實(shí)現(xiàn)換相。問(wèn)題在于,首先,當(dāng)轉(zhuǎn)子不轉(zhuǎn)時(shí),信號(hào)繞組內(nèi)不能產(chǎn)生感應(yīng)電動(dòng)勢(shì),晶體管無(wú)偏置,功率繞組也就無(wú)法饋電,所以這種無(wú)刷直流電機(jī)沒(méi)有起動(dòng)轉(zhuǎn)矩;其次,由于信號(hào)電動(dòng)勢(shì)的前沿陡度不大,晶體管的功耗大。為了克服這些弊病,人們采用了離心裝置的換向器,或采用在定子上放置輔助磁鋼的方法來(lái)保證電機(jī)可靠地起動(dòng)。但前者結(jié)構(gòu)復(fù)雜,而后者需要附加的起動(dòng)脈沖。其后,經(jīng)過(guò)反復(fù)的試驗(yàn)和不斷的實(shí)踐,人們終于找到了用位置傳感器和電子換相線(xiàn)路來(lái)代替有刷直流電機(jī)的機(jī)械換向裝置,從而為直流電機(jī)的發(fā)展開(kāi)辟了新的途徑。⒛世紀(jì)60年代初期,接近開(kāi)關(guān)式位置傳感器、電磁諧振式位置傳感器和高頻耦合式位置傳感器相繼問(wèn)世,之后又出現(xiàn)了磁電耦合式和光電式位置傳感器。半導(dǎo)體技術(shù)的飛速發(fā)展,使人們對(duì)1879年美國(guó)人霍爾發(fā)現(xiàn)的霍爾效應(yīng)再次發(fā)生興趣,經(jīng)過(guò)多年的努力,終于在1962年試制成功了借助霍爾元件(霍爾效應(yīng)轉(zhuǎn)子位置傳感器)來(lái)實(shí)現(xiàn)換相的無(wú)刷直流電機(jī)。在⒛世紀(jì)70年代初期,又試制成功了借助比霍爾元件的靈敏度高千倍左右的磁敏二極管實(shí)現(xiàn)換相的無(wú)刷直流電機(jī)。在試制各種類(lèi)型的位置傳感器的同時(shí),人們?cè)噲D尋求一種沒(méi)有附加位置傳感器結(jié)構(gòu)的無(wú)刷直流電機(jī)。1968年,德國(guó)人w·mieslinger提出采用電容移相實(shí)現(xiàn)換相的新方法。在此基礎(chǔ)上,德國(guó)人r·hanitsch試制成功借助數(shù)字式環(huán)形分配器和過(guò)零鑒別器的組合來(lái)實(shí)現(xiàn)換相的無(wú)位置傳感器無(wú)刷直流電機(jī)。
無(wú)刷直流電機(jī)按照工作特性,可以分為兩大類(lèi):
1.具有直流電機(jī)特性的無(wú)刷直流電機(jī)
反電動(dòng)勢(shì)波形和供電電流波形都是矩形波的電機(jī),稱(chēng)為矩形波同步電機(jī),又稱(chēng)無(wú)刷直流電機(jī)。這類(lèi)電機(jī)由直流電源供電,借助位置傳感器來(lái)檢測(cè)主轉(zhuǎn)子的位置,由所檢測(cè)出的信號(hào)去觸發(fā)相應(yīng)的電子換相線(xiàn)路以實(shí)現(xiàn)無(wú)接觸式換相。顯然,這種無(wú)刷直流電機(jī)具有有刷直流電機(jī)的各種運(yùn)行特性。
2.具有交流電機(jī)特性的無(wú)刷直流電機(jī)
反電動(dòng)勢(shì)波形和供電電流波形都是正弦波的電機(jī),稱(chēng)為正弦波同步電機(jī)。這類(lèi)電機(jī)也由直流電源供電,但通過(guò)逆變器將直流電變換成交流電,然后去驅(qū)動(dòng)一般的同步電機(jī)。因此,它們具有同步電機(jī)的各種運(yùn)行特性。
嚴(yán)格來(lái)說(shuō),只有具有直流電機(jī)特性的電機(jī)才能稱(chēng)為無(wú)刷直流電機(jī),本書(shū)主要討論這種類(lèi)型的無(wú)刷直流電機(jī)。
歡迎轉(zhuǎn)載,信息來(lái)自維庫(kù)電子市場(chǎng)網(wǎng)(www.dzsc.com)
上一篇:高速電機(jī)驅(qū)動(dòng)的試驗(yàn)
上一篇:相位捕獲帶分析
熱門(mén)點(diǎn)擊
- 反電動(dòng)勢(shì)過(guò)零點(diǎn)的檢測(cè)方法
- TC9242的引腳功能和主要參數(shù)介紹
- 無(wú)刷直流電機(jī)的正反轉(zhuǎn)
- 永磁無(wú)刷直流電機(jī)的設(shè)計(jì)
- 無(wú)刷直流電機(jī)模塊
- ML4425用于高速電機(jī)的起動(dòng)問(wèn)題及解決方案
- 變頻恒壓供水系統(tǒng)及控制參數(shù)選擇
- 無(wú)刷直流電機(jī)三相逆變橋模塊
- 永磁無(wú)刷直流電機(jī)的Simulink仿真
- 無(wú)刷直流電機(jī)的原理
推薦技術(shù)資料
- 自制經(jīng)典的1875功放
- 平時(shí)我也經(jīng)常逛一些音響DIY論壇,發(fā)現(xiàn)有很多人喜歡LM... [詳細(xì)]
- 100V高頻半橋N-溝道功率MOSFET驅(qū)動(dòng)
- 集成高端和低端 FET 和驅(qū)動(dòng)
- 柵極驅(qū)動(dòng)單片半橋芯片MP869
- 數(shù)字恒定導(dǎo)通時(shí)間控制模式(COT)應(yīng)用探究
- 高效率 (CSP/QFN/BG
- IC 工藝、封裝技術(shù)、單片設(shè)
- 多媒體協(xié)處理器SM501在嵌入式系統(tǒng)中的應(yīng)用
- 基于IEEE802.11b的EPA溫度變送器
- QUICCEngine新引擎推動(dòng)IP網(wǎng)絡(luò)革新
- SoC面世八年后的產(chǎn)業(yè)機(jī)遇
- MPC8xx系列處理器的嵌入式系統(tǒng)電源設(shè)計(jì)
- dsPIC及其在交流變頻調(diào)速中的應(yīng)用研究