漏電感對輸出電壓調節(jié)的影響
發(fā)布時間:2020/7/25 16:55:56 訪問次數:3593
stn3904s開關電源的輸入電路大都采用電容濾波型整流電路,在進線電源合閘瞬間,由于電容器上的初始電壓為零,電容器充電瞬間會形成很大的浪涌電流,特別是大功率開關電源,采用容量較大的濾波電容器,使浪涌電流達 100A 以上。在電源接通瞬間如此大的浪涌電流,重者往往會導致輸入熔斷器燒斷或合閘開關的觸點燒壞,整流橋過流損壞;輕者也會使空氣開關合不上閘。上述現象均會造成開關電源無法正常工作,為此所有的開關電源都設置了防止流涌電流的軟啟動電路,以保證電源正常而可靠運行。
晶閘管 V 和限流電阻 R1 組成的防浪涌電流電路。在電源接通瞬間,輸入電壓經整流橋(D1~D4)和限流電阻 R1 對電容器 C 充電,限制浪涌電流。當電容器 C 充電到約 80%額定電壓時,逆變器正常工作。經主變壓器輔助繞組產生晶閘管的觸發(fā)信號,使晶閘管導通并短路限流電阻 R1,開關電源處于正常運行狀態(tài)。
從單電源產生多輸出的系統(tǒng)拓撲時,反激式電源是一個明智的選擇。由于每個變壓器繞組上的電壓與該繞組中的匝數成比例,因此可以通過匝數來輕松設置每個輸出電壓。在理想情況下,如果調節(jié)其中一個輸出電壓,則所有其他輸出將按照匝數進行縮放,并保持穩(wěn)定。
反激式電源的交叉調整率,在現實情況中,寄生元件會共同降低未調節(jié)輸出的負載調整。我將進一步探討寄生電感的影響,以及如何使用同步整流代替二極管來大幅提高反激式電源的交叉調整率。
一個反激式電源可分別從一個 48V 輸入產生兩個 1 A 的 12V 輸出,如圖 1 的簡化仿真模型所示。理想的二極管模型具有零正向壓降,電阻可忽略不計。變壓器繞組電阻可忽略不計,只有與變壓器引線串聯的寄生電感才能建模。這些電感是變壓器內的漏電感,以及印刷電路板(PCB)印制線和二極管內的寄生電感。當設置這些電感時,兩個輸出相互跟蹤,因為當二極管在開關周期的 1-D 部分導通時,變壓器的全耦合會促使兩個輸出相等。
反激式簡化模型模擬了漏電感對輸出電壓調節(jié)的影響,當您將 100 nH 的漏電感引入變壓器的兩根二次引線,并且將 3μH 的漏電與初級繞組串聯時,將會發(fā)生什么。這些電感可在電流路徑中建立寄生電感,其中包括變壓器內部的漏電感以及 PCB 和其他元件中的電感。當初始場效應晶體管(FET)關斷時,初始漏電感仍然有電流流動,而次級漏電感開啟初始條件為 0 A 的 1-D 周期。變壓器磁芯上出現基座電壓,所有繞組共用。該基座電壓使初級漏電中的電流斜降至 0 A,并使次級漏電電流斜升以將電流傳輸到負載。當兩個重載輸出時,電流在整個 1-D 周期持續(xù)流動,輸出電壓平衡良好,如圖 2 所示。然而,當一個重載輸出和另一個輕載輸出時,輕載輸出上的輸出電容傾向于從該基座電壓發(fā)生峰值充電;因為電流迅速回升到零,其輸出二極管將停止導通。請參見圖 3 中的波形。這些寄生電感的峰值充電交叉調節(jié)影響通常比整流器正向壓降單獨引起的要差得多。
同步整流器有助于通過在整個周期內強制電流流入兩個繞組來減輕此問題。
顯示了具有與相同負載條件的波形,但用理想的同步整流器代替了理想的二極管。由于同步整流器在基座電壓降低后保持良好狀態(tài),因此即使出現嚴重不平衡的負載,兩個輸出電壓也能很好地相互跟蹤。
雖然次級 2 的平均電流非常小,但均方根(RMS)含量仍然可以相當高。這是因為,與圖 3 中的理想二極管不同,同步整流器在整個 1-D 周期期間可強制連續(xù)電流流動。有趣的是,電流在這一周期的大部分時間內必須是負的,以保證低平均電流。
以實現更高的循環(huán)電流。然而,這并不一定意味著總損耗會更高。同步整流器的正向壓降通常遠低于二極管,因此同步整流器在較高負載下的效率通常要好得多。
漏電感對交叉調節(jié)的影響,1 號輸出上的負載在 1A 時保持穩(wěn)定,而 2 號輸出上的負載則在 10 mA 到 1A 之間起伏。在低于 100 mA 的負載下,當使用二極管時,由于基座電壓峰值充電的影響,交叉調節(jié)嚴重降低。
漏電感的影響,是因為在這些模擬中使用的是理想的二極管和理想的同步整流器。當考慮電阻和整流器的正向壓降影響時,使用同步整流器的優(yōu)勢會進一步凸顯。
為了在多輸出反激式電源中實現卓越的交叉調節(jié)效果,請考慮使用同步整流器。此外,您還可能提高電源的效率。
兩個輸出之間的交叉調節(jié),其中 1 號輸出上的 1-A 負載保持穩(wěn)定,而 2 號輸出上的負載不斷變化,從而凸顯了同步整流器如何減輕漏電感的影響。

(素材來源:elecfans.如涉版權請聯系刪除。特別感謝)
stn3904s開關電源的輸入電路大都采用電容濾波型整流電路,在進線電源合閘瞬間,由于電容器上的初始電壓為零,電容器充電瞬間會形成很大的浪涌電流,特別是大功率開關電源,采用容量較大的濾波電容器,使浪涌電流達 100A 以上。在電源接通瞬間如此大的浪涌電流,重者往往會導致輸入熔斷器燒斷或合閘開關的觸點燒壞,整流橋過流損壞;輕者也會使空氣開關合不上閘。上述現象均會造成開關電源無法正常工作,為此所有的開關電源都設置了防止流涌電流的軟啟動電路,以保證電源正常而可靠運行。
晶閘管 V 和限流電阻 R1 組成的防浪涌電流電路。在電源接通瞬間,輸入電壓經整流橋(D1~D4)和限流電阻 R1 對電容器 C 充電,限制浪涌電流。當電容器 C 充電到約 80%額定電壓時,逆變器正常工作。經主變壓器輔助繞組產生晶閘管的觸發(fā)信號,使晶閘管導通并短路限流電阻 R1,開關電源處于正常運行狀態(tài)。
從單電源產生多輸出的系統(tǒng)拓撲時,反激式電源是一個明智的選擇。由于每個變壓器繞組上的電壓與該繞組中的匝數成比例,因此可以通過匝數來輕松設置每個輸出電壓。在理想情況下,如果調節(jié)其中一個輸出電壓,則所有其他輸出將按照匝數進行縮放,并保持穩(wěn)定。
反激式電源的交叉調整率,在現實情況中,寄生元件會共同降低未調節(jié)輸出的負載調整。我將進一步探討寄生電感的影響,以及如何使用同步整流代替二極管來大幅提高反激式電源的交叉調整率。
一個反激式電源可分別從一個 48V 輸入產生兩個 1 A 的 12V 輸出,如圖 1 的簡化仿真模型所示。理想的二極管模型具有零正向壓降,電阻可忽略不計。變壓器繞組電阻可忽略不計,只有與變壓器引線串聯的寄生電感才能建模。這些電感是變壓器內的漏電感,以及印刷電路板(PCB)印制線和二極管內的寄生電感。當設置這些電感時,兩個輸出相互跟蹤,因為當二極管在開關周期的 1-D 部分導通時,變壓器的全耦合會促使兩個輸出相等。
反激式簡化模型模擬了漏電感對輸出電壓調節(jié)的影響,當您將 100 nH 的漏電感引入變壓器的兩根二次引線,并且將 3μH 的漏電與初級繞組串聯時,將會發(fā)生什么。這些電感可在電流路徑中建立寄生電感,其中包括變壓器內部的漏電感以及 PCB 和其他元件中的電感。當初始場效應晶體管(FET)關斷時,初始漏電感仍然有電流流動,而次級漏電感開啟初始條件為 0 A 的 1-D 周期。變壓器磁芯上出現基座電壓,所有繞組共用。該基座電壓使初級漏電中的電流斜降至 0 A,并使次級漏電電流斜升以將電流傳輸到負載。當兩個重載輸出時,電流在整個 1-D 周期持續(xù)流動,輸出電壓平衡良好,如圖 2 所示。然而,當一個重載輸出和另一個輕載輸出時,輕載輸出上的輸出電容傾向于從該基座電壓發(fā)生峰值充電;因為電流迅速回升到零,其輸出二極管將停止導通。請參見圖 3 中的波形。這些寄生電感的峰值充電交叉調節(jié)影響通常比整流器正向壓降單獨引起的要差得多。
同步整流器有助于通過在整個周期內強制電流流入兩個繞組來減輕此問題。
顯示了具有與相同負載條件的波形,但用理想的同步整流器代替了理想的二極管。由于同步整流器在基座電壓降低后保持良好狀態(tài),因此即使出現嚴重不平衡的負載,兩個輸出電壓也能很好地相互跟蹤。
雖然次級 2 的平均電流非常小,但均方根(RMS)含量仍然可以相當高。這是因為,與圖 3 中的理想二極管不同,同步整流器在整個 1-D 周期期間可強制連續(xù)電流流動。有趣的是,電流在這一周期的大部分時間內必須是負的,以保證低平均電流。
以實現更高的循環(huán)電流。然而,這并不一定意味著總損耗會更高。同步整流器的正向壓降通常遠低于二極管,因此同步整流器在較高負載下的效率通常要好得多。
漏電感對交叉調節(jié)的影響,1 號輸出上的負載在 1A 時保持穩(wěn)定,而 2 號輸出上的負載則在 10 mA 到 1A 之間起伏。在低于 100 mA 的負載下,當使用二極管時,由于基座電壓峰值充電的影響,交叉調節(jié)嚴重降低。
漏電感的影響,是因為在這些模擬中使用的是理想的二極管和理想的同步整流器。當考慮電阻和整流器的正向壓降影響時,使用同步整流器的優(yōu)勢會進一步凸顯。
為了在多輸出反激式電源中實現卓越的交叉調節(jié)效果,請考慮使用同步整流器。此外,您還可能提高電源的效率。
兩個輸出之間的交叉調節(jié),其中 1 號輸出上的 1-A 負載保持穩(wěn)定,而 2 號輸出上的負載不斷變化,從而凸顯了同步整流器如何減輕漏電感的影響。

(素材來源:elecfans.如涉版權請聯系刪除。特別感謝)
上一篇:反激電源開關管的電流電壓波形
上一篇:開關管的輸出變壓器到整流管連接線