直流母線轉(zhuǎn)換器的兩級(jí)供電系統(tǒng)
發(fā)布時(shí)間:2020/7/23 22:27:31 訪問(wèn)次數(shù):564
在電路板上功率同樣大的情況下,電流增大32%,在配電方面的損失增大74 %左右。電路板上所有其他的工作電壓。在電路板上往往有其他輸出電壓都要由3.3 V的母線電壓經(jīng)過(guò)變換得到。往往需要幾個(gè)負(fù)載點(diǎn)輸出電壓,每個(gè)輸出電壓可以使用高頻開(kāi)關(guān)型直流/直流轉(zhuǎn)換器來(lái)產(chǎn)生。負(fù)載點(diǎn)轉(zhuǎn)換器的高頻開(kāi)關(guān)會(huì)產(chǎn)生噪音,噪音會(huì)進(jìn)入3.3 V輸入線路。由于3.3 V是直接為負(fù)載供電的,所以需要很好的濾波器來(lái)保護(hù) 3.3 V的負(fù)載。專(zhuān)用集成電路(ASIC)是用3.3V母線電壓供電的,它對(duì)噪音十分敏感,如果輸入電壓沒(méi)有很好地濾波,有可能會(huì)損壞ASIC。ASIC的價(jià)錢(qián)很高,當(dāng)然極不希望出現(xiàn)這樣的事。如果電路板上需要很大功率,而且電路板上沒(méi)有那一種電壓的負(fù)載是占主要的,在這種情況下,一般是采用12V 分布式供電系統(tǒng)。采用這個(gè)方案時(shí),在功率相同的情況下,由于電流較小,配電的損失降低了。
對(duì)于這種供電方案,所有的工作電壓都是用負(fù)載點(diǎn)轉(zhuǎn)換器來(lái)產(chǎn)生的。 在偏重于使用負(fù)載點(diǎn)轉(zhuǎn)換器的情況下,用12 V的分布式供電系統(tǒng)實(shí)現(xiàn)就容易得多。也可以用電路中的順序控制FET晶體管來(lái)控制負(fù)載點(diǎn)接通電源和切斷電源的順序,其中有一些可以由負(fù)載點(diǎn)本身來(lái)控制,這時(shí)就不需要控制順序的FET晶體管,也減少了直流損失。在市場(chǎng)上現(xiàn)在可以買(mǎi)到的輸出電壓為12 V的模塊,一般是功能齊全的磚塊型轉(zhuǎn)換器,它提供經(jīng)過(guò)穩(wěn)壓的12 V輸出電壓。 在磚塊型12 V轉(zhuǎn)換器中有反饋,通過(guò)一只光耦合器把反饋信號(hào)送回到轉(zhuǎn)換器的原邊。磚塊型12 V轉(zhuǎn)換器的有效值電流很大,次級(jí)需要額定電壓為40 V至100 V的FET晶體管,額定電壓較高的FET晶體管的Rds(on)高于額定電壓較低的FET晶體管的Rds(on),因而轉(zhuǎn)換器的效率比較低──如果平均輸出電較低的話就可以用額定電壓較低的FET晶體管。在給定輸出功率的情況下,具有穩(wěn)壓作用的磚塊型轉(zhuǎn)換器往往相當(dāng)貴,而且體積大,因?yàn)樵谀K內(nèi)有相當(dāng)多的元件。使用分布式的12 V母線電壓時(shí),也會(huì)略微降低負(fù)載點(diǎn)轉(zhuǎn)換器的效率,因?yàn)檩斎腚妷褐苯佑绊懾?fù)載點(diǎn)轉(zhuǎn)換器的開(kāi)關(guān)損生。
VPH2-0216-R在電路板上進(jìn)行配電,最好的方法是使用一個(gè)在3.3 V與12 V之間的中間電壓。在使用兩級(jí)功率轉(zhuǎn)換的情況下,這個(gè)中間母線電壓不需要嚴(yán)格地進(jìn)行穩(wěn)壓。新型負(fù)載點(diǎn)轉(zhuǎn)換器的輸入電壓范圍很寬,這就是說(shuō),產(chǎn)生中間母線電壓的隔離式轉(zhuǎn)換器可以用比較簡(jiǎn)單的方法來(lái)實(shí)現(xiàn)。對(duì)于負(fù)載點(diǎn)轉(zhuǎn)換器來(lái)講,最優(yōu)的輸入電壓介于6 V至8 V之間,這時(shí),功率損失最小。就兩級(jí)轉(zhuǎn)換的優(yōu)化而言,這是最好的辦法,尤其是對(duì)于功率為 150 W的系統(tǒng)。結(jié)果我們可以在很小的面積中、用數(shù)量很少的元件,設(shè)計(jì)出一個(gè)高效率的隔離式轉(zhuǎn)換器。功能齊全的磚塊型轉(zhuǎn)換器使用的元件數(shù)量高達(dá)五十個(gè)還要多,整個(gè)設(shè)計(jì)不必要地變得十分復(fù)雜。如果把輸出電壓穩(wěn)壓電路去掉,可以大量地減少模塊中的元件數(shù)量。直流母線電壓轉(zhuǎn)換器使用隔離式轉(zhuǎn)換器,它工作在占空比為50 %的狀態(tài),因而可以使用比較簡(jiǎn)單、自行驅(qū)動(dòng)的次級(jí)同步整流器,最大程度地提高了功率轉(zhuǎn)換的效率,也最大程度地減輕了對(duì)輸入電壓和輸出電壓濾波的要求,而且還提高了可靠性。
直流母線電壓轉(zhuǎn)器是把48 V輸入變成中間母線電壓的新方法。中間母線電壓為負(fù)載點(diǎn)轉(zhuǎn)換器供電。做一個(gè)隔離式轉(zhuǎn)換器并不難,它是開(kāi)環(huán)的,占空比固定為50 %,把48 V輸入電壓變?yōu)?8 V的中間母線電壓。它使用變比為3:1的變壓器,再通過(guò)初級(jí)半橋整流器得到輸入電壓與輸出電壓的比為6:1。由于現(xiàn)在有了作為第二級(jí)的負(fù)載點(diǎn)轉(zhuǎn)換器解決方案,例如 iPOWIRTM 技術(shù),它的輸入電壓范圍很寬,所以對(duì)于48 V系統(tǒng)來(lái)講,這個(gè)方法極有吸引力,它也可以用于輸入電壓變化范圍很寬的系統(tǒng)(36 V 至75 V)。 當(dāng)輸入電壓在很寬范圍變化時(shí),輸出電壓也以同樣的比率變化,所以如果輸入電壓在36 V至75 V的范圍變化,輸出電壓的變化范圍就是6 V至12 V。直流母線轉(zhuǎn)換器作為前端電路加上作為第二級(jí)的iPOWIRTM,便構(gòu)成高效率的兩級(jí)功率轉(zhuǎn)換方案。直流母線轉(zhuǎn)換電路的效率最高、占的空間最小,在功率密度方面是最好的,大量地減少了元件數(shù)量,因而有利于降低總成本。這個(gè)方案對(duì)輸入濾波和輸出濾波的要求也是最低的,所以可以進(jìn)一步減少電容器和其他元件。這種電源系統(tǒng)的控制、監(jiān)控、同步以及順序控制都大大地簡(jiǎn)化了。直流母轉(zhuǎn)換器設(shè)計(jì)的例子,其中使用了很有創(chuàng)意的新技術(shù),因而可以達(dá)到這樣的性能?梢岳弥绷髂妇轉(zhuǎn)換器解決方案來(lái)實(shí)現(xiàn)兩級(jí)供電系統(tǒng)。直流母線轉(zhuǎn)換器芯片組四周是原邊半橋整流器控制器和驅(qū)動(dòng)器集成電路和MOSFET技術(shù),正是由于這個(gè)芯片組,才能達(dá)到這樣的性能。
深圳市永拓豐科技有限公司http://ytf01.51dzw.com/
(素材來(lái)源:21ic.如涉版權(quán)請(qǐng)聯(lián)系刪除。特別感謝)
在電路板上功率同樣大的情況下,電流增大32%,在配電方面的損失增大74 %左右。電路板上所有其他的工作電壓。在電路板上往往有其他輸出電壓都要由3.3 V的母線電壓經(jīng)過(guò)變換得到。往往需要幾個(gè)負(fù)載點(diǎn)輸出電壓,每個(gè)輸出電壓可以使用高頻開(kāi)關(guān)型直流/直流轉(zhuǎn)換器來(lái)產(chǎn)生。負(fù)載點(diǎn)轉(zhuǎn)換器的高頻開(kāi)關(guān)會(huì)產(chǎn)生噪音,噪音會(huì)進(jìn)入3.3 V輸入線路。由于3.3 V是直接為負(fù)載供電的,所以需要很好的濾波器來(lái)保護(hù) 3.3 V的負(fù)載。專(zhuān)用集成電路(ASIC)是用3.3V母線電壓供電的,它對(duì)噪音十分敏感,如果輸入電壓沒(méi)有很好地濾波,有可能會(huì)損壞ASIC。ASIC的價(jià)錢(qián)很高,當(dāng)然極不希望出現(xiàn)這樣的事。如果電路板上需要很大功率,而且電路板上沒(méi)有那一種電壓的負(fù)載是占主要的,在這種情況下,一般是采用12V 分布式供電系統(tǒng)。采用這個(gè)方案時(shí),在功率相同的情況下,由于電流較小,配電的損失降低了。
對(duì)于這種供電方案,所有的工作電壓都是用負(fù)載點(diǎn)轉(zhuǎn)換器來(lái)產(chǎn)生的。 在偏重于使用負(fù)載點(diǎn)轉(zhuǎn)換器的情況下,用12 V的分布式供電系統(tǒng)實(shí)現(xiàn)就容易得多。也可以用電路中的順序控制FET晶體管來(lái)控制負(fù)載點(diǎn)接通電源和切斷電源的順序,其中有一些可以由負(fù)載點(diǎn)本身來(lái)控制,這時(shí)就不需要控制順序的FET晶體管,也減少了直流損失。在市場(chǎng)上現(xiàn)在可以買(mǎi)到的輸出電壓為12 V的模塊,一般是功能齊全的磚塊型轉(zhuǎn)換器,它提供經(jīng)過(guò)穩(wěn)壓的12 V輸出電壓。 在磚塊型12 V轉(zhuǎn)換器中有反饋,通過(guò)一只光耦合器把反饋信號(hào)送回到轉(zhuǎn)換器的原邊。磚塊型12 V轉(zhuǎn)換器的有效值電流很大,次級(jí)需要額定電壓為40 V至100 V的FET晶體管,額定電壓較高的FET晶體管的Rds(on)高于額定電壓較低的FET晶體管的Rds(on),因而轉(zhuǎn)換器的效率比較低──如果平均輸出電較低的話就可以用額定電壓較低的FET晶體管。在給定輸出功率的情況下,具有穩(wěn)壓作用的磚塊型轉(zhuǎn)換器往往相當(dāng)貴,而且體積大,因?yàn)樵谀K內(nèi)有相當(dāng)多的元件。使用分布式的12 V母線電壓時(shí),也會(huì)略微降低負(fù)載點(diǎn)轉(zhuǎn)換器的效率,因?yàn)檩斎腚妷褐苯佑绊懾?fù)載點(diǎn)轉(zhuǎn)換器的開(kāi)關(guān)損生。
VPH2-0216-R在電路板上進(jìn)行配電,最好的方法是使用一個(gè)在3.3 V與12 V之間的中間電壓。在使用兩級(jí)功率轉(zhuǎn)換的情況下,這個(gè)中間母線電壓不需要嚴(yán)格地進(jìn)行穩(wěn)壓。新型負(fù)載點(diǎn)轉(zhuǎn)換器的輸入電壓范圍很寬,這就是說(shuō),產(chǎn)生中間母線電壓的隔離式轉(zhuǎn)換器可以用比較簡(jiǎn)單的方法來(lái)實(shí)現(xiàn)。對(duì)于負(fù)載點(diǎn)轉(zhuǎn)換器來(lái)講,最優(yōu)的輸入電壓介于6 V至8 V之間,這時(shí),功率損失最小。就兩級(jí)轉(zhuǎn)換的優(yōu)化而言,這是最好的辦法,尤其是對(duì)于功率為 150 W的系統(tǒng)。結(jié)果我們可以在很小的面積中、用數(shù)量很少的元件,設(shè)計(jì)出一個(gè)高效率的隔離式轉(zhuǎn)換器。功能齊全的磚塊型轉(zhuǎn)換器使用的元件數(shù)量高達(dá)五十個(gè)還要多,整個(gè)設(shè)計(jì)不必要地變得十分復(fù)雜。如果把輸出電壓穩(wěn)壓電路去掉,可以大量地減少模塊中的元件數(shù)量。直流母線電壓轉(zhuǎn)換器使用隔離式轉(zhuǎn)換器,它工作在占空比為50 %的狀態(tài),因而可以使用比較簡(jiǎn)單、自行驅(qū)動(dòng)的次級(jí)同步整流器,最大程度地提高了功率轉(zhuǎn)換的效率,也最大程度地減輕了對(duì)輸入電壓和輸出電壓濾波的要求,而且還提高了可靠性。
直流母線電壓轉(zhuǎn)器是把48 V輸入變成中間母線電壓的新方法。中間母線電壓為負(fù)載點(diǎn)轉(zhuǎn)換器供電。做一個(gè)隔離式轉(zhuǎn)換器并不難,它是開(kāi)環(huán)的,占空比固定為50 %,把48 V輸入電壓變?yōu)?8 V的中間母線電壓。它使用變比為3:1的變壓器,再通過(guò)初級(jí)半橋整流器得到輸入電壓與輸出電壓的比為6:1。由于現(xiàn)在有了作為第二級(jí)的負(fù)載點(diǎn)轉(zhuǎn)換器解決方案,例如 iPOWIRTM 技術(shù),它的輸入電壓范圍很寬,所以對(duì)于48 V系統(tǒng)來(lái)講,這個(gè)方法極有吸引力,它也可以用于輸入電壓變化范圍很寬的系統(tǒng)(36 V 至75 V)。 當(dāng)輸入電壓在很寬范圍變化時(shí),輸出電壓也以同樣的比率變化,所以如果輸入電壓在36 V至75 V的范圍變化,輸出電壓的變化范圍就是6 V至12 V。直流母線轉(zhuǎn)換器作為前端電路加上作為第二級(jí)的iPOWIRTM,便構(gòu)成高效率的兩級(jí)功率轉(zhuǎn)換方案。直流母線轉(zhuǎn)換電路的效率最高、占的空間最小,在功率密度方面是最好的,大量地減少了元件數(shù)量,因而有利于降低總成本。這個(gè)方案對(duì)輸入濾波和輸出濾波的要求也是最低的,所以可以進(jìn)一步減少電容器和其他元件。這種電源系統(tǒng)的控制、監(jiān)控、同步以及順序控制都大大地簡(jiǎn)化了。直流母轉(zhuǎn)換器設(shè)計(jì)的例子,其中使用了很有創(chuàng)意的新技術(shù),因而可以達(dá)到這樣的性能?梢岳弥绷髂妇轉(zhuǎn)換器解決方案來(lái)實(shí)現(xiàn)兩級(jí)供電系統(tǒng)。直流母線轉(zhuǎn)換器芯片組四周是原邊半橋整流器控制器和驅(qū)動(dòng)器集成電路和MOSFET技術(shù),正是由于這個(gè)芯片組,才能達(dá)到這樣的性能。
深圳市永拓豐科技有限公司http://ytf01.51dzw.com/
(素材來(lái)源:21ic.如涉版權(quán)請(qǐng)聯(lián)系刪除。特別感謝)
熱門(mén)點(diǎn)擊
- 多電芯的降壓-升壓電池充電器
- 低待機(jī)電流和專(zhuān)用軟件控制無(wú)線電控制器
- 傳感器融合系統(tǒng)ADAS域控制器
- 集成環(huán)境和運(yùn)動(dòng)傳感器
- 可編程邏輯控制器射頻輸出
- 電源通路控制的鋰離子充電電池
- 短距離低功率無(wú)線通信技術(shù)
- 雙通道IR LED定電流驅(qū)動(dòng)
- 傳感器性能和光電表征測(cè)試報(bào)告
- 雙路光電檢測(cè)器的光傳感器方案
推薦技術(shù)資料
- 100V高頻半橋N-溝道功率MOSFET驅(qū)動(dòng)
- 集成高端和低端 FET 和驅(qū)動(dòng)
- 柵極驅(qū)動(dòng)單片半橋芯片MP869
- 數(shù)字恒定導(dǎo)通時(shí)間控制模式(COT)應(yīng)用探究
- 高效率 (CSP/QFN/BG
- IC 工藝、封裝技術(shù)、單片設(shè)
- 多媒體協(xié)處理器SM501在嵌入式系統(tǒng)中的應(yīng)用
- 基于IEEE802.11b的EPA溫度變送器
- QUICCEngine新引擎推動(dòng)IP網(wǎng)絡(luò)革新
- SoC面世八年后的產(chǎn)業(yè)機(jī)遇
- MPC8xx系列處理器的嵌入式系統(tǒng)電源設(shè)計(jì)
- dsPIC及其在交流變頻調(diào)速中的應(yīng)用研究