C程序設(shè)計的常用算法
發(fā)布時間:2008/5/28 0:00:00 訪問次數(shù):482
算法(algorithm):計算機解題的基本思想方法和步驟。算法的描述:是對要解決一個問題或要完成一項任務(wù)所采取的方法和步驟的描述,包括需要什么數(shù)據(jù)(輸入什么數(shù)據(jù)、輸出什么結(jié)果)、采用什么結(jié)構(gòu)、使用什么語句以及如何安排這些語句等。通常使用自然語言、結(jié)構(gòu)化流程圖、偽代碼等來描述算法。
一、計數(shù)、求和、求階乘等簡單算法
此類問題都要使用循環(huán),要注意根據(jù)問題確定循環(huán)變量的初值、終值或結(jié)束條件,更要注意用來表示計數(shù)、和、階乘的變量的初值。
例:用隨機函數(shù)產(chǎn)生100個[0,99]范圍內(nèi)的隨機整數(shù),統(tǒng)計個位上的數(shù)字分別為1,2,3,4,5,6,7,8,9,0的數(shù)的個數(shù)并打印出來。
本題使用數(shù)組來處理,用數(shù)組a[100]存放產(chǎn)生的確100個隨機整數(shù),數(shù)組x[10]來存放個位上的數(shù)字分別為1,2,3,4,5,6,7,8,9,0的數(shù)的個數(shù)。即個位是1的個數(shù)存放在x[1]中,個位是2的個數(shù)存放在x[2]中,……個位是0的個數(shù)存放在x[10]。
void main()
{ int a[101],x[11],i,p;
for(i=0;i<=11;i++)
x=0;
for(i=1;i<=100;i++)
{ a=rand() % 100;
printf("%4d",a);
if(i%10==0)printf("\n");
}
for(i=1;i<=100;i++)
{ p=a%10;
if(p==0) p=10;
x[p]=x[p]+1;
}
for(i=1;i<=10;i++)
{ p=i;
if(i==10) p=0;
printf("%d,%d\n",p,x);
}
printf("\n");
}
二、求兩個整數(shù)的最大公約數(shù)、最小公倍數(shù)
分析:求最大公約數(shù)的算法思想:(最小公倍數(shù)=兩個整數(shù)之積/最大公約數(shù))
(1) 對于已知兩數(shù)m,n,使得m>n;
(2) m除以n得余數(shù)r;
(3) 若r=0,則n為求得的最大公約數(shù),算法結(jié)束;否則執(zhí)行(4);
(4) m←n,n←r,再重復(fù)執(zhí)行(2)。
例如: 求 m=14 ,n=6 的最大公約數(shù). m n r
14 6 2
6 2 0
void main()
{ int nm,r,n,m,t;
printf("please input two numbers:\n");
scanf("%d,%d",&m,&n);
nm=n*m;
if (m<n)
{ t=n; n=m; m=t; }
r=m%n;
while (r!=0)
{ m=n; n=r; r=m%n; }
printf("最大公約數(shù):%d\n",n);
printf("最小公倍數(shù):%d\n",nm/n);
}
三、判斷素數(shù)
只能被1或本身整除的數(shù)稱為素數(shù) 基本思想:把m作為被除數(shù),將2—int( )作為除數(shù),如果都除不盡,m就是素數(shù),否則就不是。(可用以下程序段實現(xiàn))
void main()
{ int m,i,k;
printf("please input a number:\n");
scanf("%d",&m);
k=sqrt(m);
for(i=2;i<k;i++)
if(m%i==0) break;
if(i>=k)
printf("該數(shù)是素數(shù)");
else
printf("該數(shù)不是素數(shù)");
}
將其寫成一函數(shù),若為素數(shù)返回1,不是則返回0
int prime( m%)
{int i,k;
k=sqrt(m);
for(i=2;i<k;i++)
if(m%i==0) return 0;
return 1;
}
四、驗證哥德巴赫猜想
。ㄈ我庖粋大于等于6的偶數(shù)都可以分解為兩個素數(shù)之和)
基本思想:n為大于等于6的任一偶數(shù),可分解為n1和n2兩個數(shù),分別檢查n1和n2是否為素數(shù),如都是,則為一組解。如n1不是素數(shù),就不必再檢查n2是否素數(shù)。先從n1=3開始,檢驗n1和n2(n2=n-n1)是否素數(shù)。然后使n1+2 再檢驗n1、n2是否素數(shù),… 直到n1=n/2為止。
利用上面的prime函數(shù),驗證哥德巴赫猜想的程序代碼如下:
#include "math.h"
int prime(int m)
{ int i,k;
k=sqrt(m);
for(i=2;i<k;i++)
if(m%i==0) break;
if(i>=k)
return 1;
else
return 0;
}
main()
{ int x,i;
printf("please input a even number(>=6):\n");
scanf("%d",&x);
if (x<6||x%2!=0)
printf("data error!\n");
else
for(i=2;i<=x/2;i++)
if (prime(i)&&prime(x-i))
{
printf("%d+%d\n",i,x-i);
printf("驗證成功!");
break;
}
}
五、排序問題
1.選擇法排序(升序)
基本思想:
1)對有n個數(shù)的序列(存放在數(shù)組a(n)中),從中選出最小的數(shù),與第1個數(shù)交換位置;
2)除第1 個數(shù)外,其余n-1個數(shù)中選最小的數(shù),與第2個數(shù)交換位置;
3)依次類推,選擇了n-1次后,這個數(shù)列已按升序排列。
程序代碼如下:
void main()
{ int i,j,imin,s,a[10];
printf("\n input 10 numbers:\n");
for(i=0;i<10;i++)
scanf("%d",&a);
for(i=0;i<9;i++)
{ imin=i;
for(j=i+1;j<10;j++)
if(a[imin]>a[j]) imin=j;
if(i!=imin)
{s=a; a=a[imin]; a[imin]=s; }
printf("%d\n
一、計數(shù)、求和、求階乘等簡單算法
此類問題都要使用循環(huán),要注意根據(jù)問題確定循環(huán)變量的初值、終值或結(jié)束條件,更要注意用來表示計數(shù)、和、階乘的變量的初值。
例:用隨機函數(shù)產(chǎn)生100個[0,99]范圍內(nèi)的隨機整數(shù),統(tǒng)計個位上的數(shù)字分別為1,2,3,4,5,6,7,8,9,0的數(shù)的個數(shù)并打印出來。
本題使用數(shù)組來處理,用數(shù)組a[100]存放產(chǎn)生的確100個隨機整數(shù),數(shù)組x[10]來存放個位上的數(shù)字分別為1,2,3,4,5,6,7,8,9,0的數(shù)的個數(shù)。即個位是1的個數(shù)存放在x[1]中,個位是2的個數(shù)存放在x[2]中,……個位是0的個數(shù)存放在x[10]。
void main()
{ int a[101],x[11],i,p;
for(i=0;i<=11;i++)
x=0;
for(i=1;i<=100;i++)
{ a=rand() % 100;
printf("%4d",a);
if(i%10==0)printf("\n");
}
for(i=1;i<=100;i++)
{ p=a%10;
if(p==0) p=10;
x[p]=x[p]+1;
}
for(i=1;i<=10;i++)
{ p=i;
if(i==10) p=0;
printf("%d,%d\n",p,x);
}
printf("\n");
}
二、求兩個整數(shù)的最大公約數(shù)、最小公倍數(shù)
分析:求最大公約數(shù)的算法思想:(最小公倍數(shù)=兩個整數(shù)之積/最大公約數(shù))
(1) 對于已知兩數(shù)m,n,使得m>n;
(2) m除以n得余數(shù)r;
(3) 若r=0,則n為求得的最大公約數(shù),算法結(jié)束;否則執(zhí)行(4);
(4) m←n,n←r,再重復(fù)執(zhí)行(2)。
例如: 求 m=14 ,n=6 的最大公約數(shù). m n r
14 6 2
6 2 0
void main()
{ int nm,r,n,m,t;
printf("please input two numbers:\n");
scanf("%d,%d",&m,&n);
nm=n*m;
if (m<n)
{ t=n; n=m; m=t; }
r=m%n;
while (r!=0)
{ m=n; n=r; r=m%n; }
printf("最大公約數(shù):%d\n",n);
printf("最小公倍數(shù):%d\n",nm/n);
}
三、判斷素數(shù)
只能被1或本身整除的數(shù)稱為素數(shù) 基本思想:把m作為被除數(shù),將2—int( )作為除數(shù),如果都除不盡,m就是素數(shù),否則就不是。(可用以下程序段實現(xiàn))
void main()
{ int m,i,k;
printf("please input a number:\n");
scanf("%d",&m);
k=sqrt(m);
for(i=2;i<k;i++)
if(m%i==0) break;
if(i>=k)
printf("該數(shù)是素數(shù)");
else
printf("該數(shù)不是素數(shù)");
}
將其寫成一函數(shù),若為素數(shù)返回1,不是則返回0
int prime( m%)
{int i,k;
k=sqrt(m);
for(i=2;i<k;i++)
if(m%i==0) return 0;
return 1;
}
四、驗證哥德巴赫猜想
。ㄈ我庖粋大于等于6的偶數(shù)都可以分解為兩個素數(shù)之和)
基本思想:n為大于等于6的任一偶數(shù),可分解為n1和n2兩個數(shù),分別檢查n1和n2是否為素數(shù),如都是,則為一組解。如n1不是素數(shù),就不必再檢查n2是否素數(shù)。先從n1=3開始,檢驗n1和n2(n2=n-n1)是否素數(shù)。然后使n1+2 再檢驗n1、n2是否素數(shù),… 直到n1=n/2為止。
利用上面的prime函數(shù),驗證哥德巴赫猜想的程序代碼如下:
#include "math.h"
int prime(int m)
{ int i,k;
k=sqrt(m);
for(i=2;i<k;i++)
if(m%i==0) break;
if(i>=k)
return 1;
else
return 0;
}
main()
{ int x,i;
printf("please input a even number(>=6):\n");
scanf("%d",&x);
if (x<6||x%2!=0)
printf("data error!\n");
else
for(i=2;i<=x/2;i++)
if (prime(i)&&prime(x-i))
{
printf("%d+%d\n",i,x-i);
printf("驗證成功!");
break;
}
}
五、排序問題
1.選擇法排序(升序)
基本思想:
1)對有n個數(shù)的序列(存放在數(shù)組a(n)中),從中選出最小的數(shù),與第1個數(shù)交換位置;
2)除第1 個數(shù)外,其余n-1個數(shù)中選最小的數(shù),與第2個數(shù)交換位置;
3)依次類推,選擇了n-1次后,這個數(shù)列已按升序排列。
程序代碼如下:
void main()
{ int i,j,imin,s,a[10];
printf("\n input 10 numbers:\n");
for(i=0;i<10;i++)
scanf("%d",&a);
for(i=0;i<9;i++)
{ imin=i;
for(j=i+1;j<10;j++)
if(a[imin]>a[j]) imin=j;
if(i!=imin)
{s=a; a=a[imin]; a[imin]=s; }
printf("%d\n
算法(algorithm):計算機解題的基本思想方法和步驟。算法的描述:是對要解決一個問題或要完成一項任務(wù)所采取的方法和步驟的描述,包括需要什么數(shù)據(jù)(輸入什么數(shù)據(jù)、輸出什么結(jié)果)、采用什么結(jié)構(gòu)、使用什么語句以及如何安排這些語句等。通常使用自然語言、結(jié)構(gòu)化流程圖、偽代碼等來描述算法。
一、計數(shù)、求和、求階乘等簡單算法
此類問題都要使用循環(huán),要注意根據(jù)問題確定循環(huán)變量的初值、終值或結(jié)束條件,更要注意用來表示計數(shù)、和、階乘的變量的初值。
例:用隨機函數(shù)產(chǎn)生100個[0,99]范圍內(nèi)的隨機整數(shù),統(tǒng)計個位上的數(shù)字分別為1,2,3,4,5,6,7,8,9,0的數(shù)的個數(shù)并打印出來。
本題使用數(shù)組來處理,用數(shù)組a[100]存放產(chǎn)生的確100個隨機整數(shù),數(shù)組x[10]來存放個位上的數(shù)字分別為1,2,3,4,5,6,7,8,9,0的數(shù)的個數(shù)。即個位是1的個數(shù)存放在x[1]中,個位是2的個數(shù)存放在x[2]中,……個位是0的個數(shù)存放在x[10]。
void main()
{ int a[101],x[11],i,p;
for(i=0;i<=11;i++)
x=0;
for(i=1;i<=100;i++)
{ a=rand() % 100;
printf("%4d",a);
if(i%10==0)printf("\n");
}
for(i=1;i<=100;i++)
{ p=a%10;
if(p==0) p=10;
x[p]=x[p]+1;
}
for(i=1;i<=10;i++)
{ p=i;
if(i==10) p=0;
printf("%d,%d\n",p,x);
}
printf("\n");
}
二、求兩個整數(shù)的最大公約數(shù)、最小公倍數(shù)
分析:求最大公約數(shù)的算法思想:(最小公倍數(shù)=兩個整數(shù)之積/最大公約數(shù))
(1) 對于已知兩數(shù)m,n,使得m>n;
(2) m除以n得余數(shù)r;
(3) 若r=0,則n為求得的最大公約數(shù),算法結(jié)束;否則執(zhí)行(4);
(4) m←n,n←r,再重復(fù)執(zhí)行(2)。
例如: 求 m=14 ,n=6 的最大公約數(shù). m n r
14 6 2
6 2 0
void main()
{ int nm,r,n,m,t;
printf("please input two numbers:\n");
scanf("%d,%d",&m,&n);
nm=n*m;
if (m<n)
{ t=n; n=m; m=t; }
r=m%n;
while (r!=0)
{ m=n; n=r; r=m%n; }
printf("最大公約數(shù):%d\n",n);
printf("最小公倍數(shù):%d\n",nm/n);
}
三、判斷素數(shù)
只能被1或本身整除的數(shù)稱為素數(shù) 基本思想:把m作為被除數(shù),將2—int( )作為除數(shù),如果都除不盡,m就是素數(shù),否則就不是。(可用以下程序段實現(xiàn))
void main()
{ int m,i,k;
printf("please input a number:\n");
scanf("%d",&m);
k=sqrt(m);
for(i=2;i<k;i++)
if(m%i==0) break;
if(i>=k)
printf("該數(shù)是素數(shù)");
else
printf("該數(shù)不是素數(shù)");
}
將其寫成一函數(shù),若為素數(shù)返回1,不是則返回0
int prime( m%)
{int i,k;
k=sqrt(m);
for(i=2;i<k;i++)
if(m%i==0) return 0;
return 1;
}
四、驗證哥德巴赫猜想
。ㄈ我庖粋大于等于6的偶數(shù)都可以分解為兩個素數(shù)之和)
基本思想:n為大于等于6的任一偶數(shù),可分解為n1和n2兩個數(shù),分別檢查n1和n2是否為素數(shù),如都是,則為一組解。如n1不是素數(shù),就不必再檢查n2是否素數(shù)。先從n1=3開始,檢驗n1和n2(n2=n-n1)是否素數(shù)。然后使n1+2 再檢驗n1、n2是否素數(shù),… 直到n1=n/2為止。
利用上面的prime函數(shù),驗證哥德巴赫猜想的程序代碼如下:
#include "math.h"
int prime(int m)
{ int i,k;
k=sqrt(m);
for(i=2;i<k;i++)
if(m%i==0) break;
if(i>=k)
return 1;
else
return 0;
}
main()
{ int x,i;
printf("please input a even number(>=6):\n");
scanf("%d",&x);
if (x<6||x%2!=0)
printf("data error!\n");
else
for(i=2;i<=x/2;i++)
if (prime(i)&&prime(x-i))
{
printf("%d+%d\n",i,x-i);
printf("驗證成功!");
break;
}
}
五、排序問題
1.選擇法排序(升序)
基本思想:
1)對有n個數(shù)的序列(存放在數(shù)組a(n)中),從中選出最小的數(shù),與第1個數(shù)交換位置;
2)除第1 個數(shù)外,其余n-1個數(shù)中選最小的數(shù),與第2個數(shù)交換位置;
3)依次類推,選擇了n-1次后,這個數(shù)列已按升序排列。
程序代碼如下:
void main()
{ int i,j,imin,s,a[10];
printf("\n input 10 numbers:\n");
for(i=0;i<10;i++)
scanf("%d",&a);
for(i=0;i<9;i++)
{ imin=i;
for(j=i+1;j<10;j++)
if(a[imin]>a[j]) imin=j;
if(i!=imin)
{s=a; a=a[imin]; a[imin]=s; }
printf("%d\n
一、計數(shù)、求和、求階乘等簡單算法
此類問題都要使用循環(huán),要注意根據(jù)問題確定循環(huán)變量的初值、終值或結(jié)束條件,更要注意用來表示計數(shù)、和、階乘的變量的初值。
例:用隨機函數(shù)產(chǎn)生100個[0,99]范圍內(nèi)的隨機整數(shù),統(tǒng)計個位上的數(shù)字分別為1,2,3,4,5,6,7,8,9,0的數(shù)的個數(shù)并打印出來。
本題使用數(shù)組來處理,用數(shù)組a[100]存放產(chǎn)生的確100個隨機整數(shù),數(shù)組x[10]來存放個位上的數(shù)字分別為1,2,3,4,5,6,7,8,9,0的數(shù)的個數(shù)。即個位是1的個數(shù)存放在x[1]中,個位是2的個數(shù)存放在x[2]中,……個位是0的個數(shù)存放在x[10]。
void main()
{ int a[101],x[11],i,p;
for(i=0;i<=11;i++)
x=0;
for(i=1;i<=100;i++)
{ a=rand() % 100;
printf("%4d",a);
if(i%10==0)printf("\n");
}
for(i=1;i<=100;i++)
{ p=a%10;
if(p==0) p=10;
x[p]=x[p]+1;
}
for(i=1;i<=10;i++)
{ p=i;
if(i==10) p=0;
printf("%d,%d\n",p,x);
}
printf("\n");
}
二、求兩個整數(shù)的最大公約數(shù)、最小公倍數(shù)
分析:求最大公約數(shù)的算法思想:(最小公倍數(shù)=兩個整數(shù)之積/最大公約數(shù))
(1) 對于已知兩數(shù)m,n,使得m>n;
(2) m除以n得余數(shù)r;
(3) 若r=0,則n為求得的最大公約數(shù),算法結(jié)束;否則執(zhí)行(4);
(4) m←n,n←r,再重復(fù)執(zhí)行(2)。
例如: 求 m=14 ,n=6 的最大公約數(shù). m n r
14 6 2
6 2 0
void main()
{ int nm,r,n,m,t;
printf("please input two numbers:\n");
scanf("%d,%d",&m,&n);
nm=n*m;
if (m<n)
{ t=n; n=m; m=t; }
r=m%n;
while (r!=0)
{ m=n; n=r; r=m%n; }
printf("最大公約數(shù):%d\n",n);
printf("最小公倍數(shù):%d\n",nm/n);
}
三、判斷素數(shù)
只能被1或本身整除的數(shù)稱為素數(shù) 基本思想:把m作為被除數(shù),將2—int( )作為除數(shù),如果都除不盡,m就是素數(shù),否則就不是。(可用以下程序段實現(xiàn))
void main()
{ int m,i,k;
printf("please input a number:\n");
scanf("%d",&m);
k=sqrt(m);
for(i=2;i<k;i++)
if(m%i==0) break;
if(i>=k)
printf("該數(shù)是素數(shù)");
else
printf("該數(shù)不是素數(shù)");
}
將其寫成一函數(shù),若為素數(shù)返回1,不是則返回0
int prime( m%)
{int i,k;
k=sqrt(m);
for(i=2;i<k;i++)
if(m%i==0) return 0;
return 1;
}
四、驗證哥德巴赫猜想
。ㄈ我庖粋大于等于6的偶數(shù)都可以分解為兩個素數(shù)之和)
基本思想:n為大于等于6的任一偶數(shù),可分解為n1和n2兩個數(shù),分別檢查n1和n2是否為素數(shù),如都是,則為一組解。如n1不是素數(shù),就不必再檢查n2是否素數(shù)。先從n1=3開始,檢驗n1和n2(n2=n-n1)是否素數(shù)。然后使n1+2 再檢驗n1、n2是否素數(shù),… 直到n1=n/2為止。
利用上面的prime函數(shù),驗證哥德巴赫猜想的程序代碼如下:
#include "math.h"
int prime(int m)
{ int i,k;
k=sqrt(m);
for(i=2;i<k;i++)
if(m%i==0) break;
if(i>=k)
return 1;
else
return 0;
}
main()
{ int x,i;
printf("please input a even number(>=6):\n");
scanf("%d",&x);
if (x<6||x%2!=0)
printf("data error!\n");
else
for(i=2;i<=x/2;i++)
if (prime(i)&&prime(x-i))
{
printf("%d+%d\n",i,x-i);
printf("驗證成功!");
break;
}
}
五、排序問題
1.選擇法排序(升序)
基本思想:
1)對有n個數(shù)的序列(存放在數(shù)組a(n)中),從中選出最小的數(shù),與第1個數(shù)交換位置;
2)除第1 個數(shù)外,其余n-1個數(shù)中選最小的數(shù),與第2個數(shù)交換位置;
3)依次類推,選擇了n-1次后,這個數(shù)列已按升序排列。
程序代碼如下:
void main()
{ int i,j,imin,s,a[10];
printf("\n input 10 numbers:\n");
for(i=0;i<10;i++)
scanf("%d",&a);
for(i=0;i<9;i++)
{ imin=i;
for(j=i+1;j<10;j++)
if(a[imin]>a[j]) imin=j;
if(i!=imin)
{s=a; a=a[imin]; a[imin]=s; }
printf("%d\n
熱門點擊
- Xilinx FPGA全局時鐘和第二全局時鐘
- 使用C編譯器+ICD2調(diào)試程序需要注意的問題
- Altera發(fā)布低成本低功耗CPLD EPM
- 基于VHDL的彩燈控制
- FPGA與DDR3 SDRAM的接口設(shè)計
- 基于IP模塊的PCI接口設(shè)計及FPGA實現(xiàn)
- 基于GCC的嵌入式程序插裝技術(shù)
- 組態(tài)王6.53
- ELD
- EDA技術(shù)在數(shù)字系統(tǒng)設(shè)計分析中的應(yīng)用
推薦技術(shù)資料
- 聲道前級設(shè)計特點
- 與通常的Hi-Fi前級不同,EP9307-CRZ這臺分... [詳細(xì)]
- CV/CC InnoSwitch3-AQ 開
- URF1DxxM-60WR3系
- 1-6W URA24xxN-x
- 閉環(huán)磁通門信號調(diào)節(jié)芯片NSDRV401
- SK-RiSC-SOM-H27X-V1.1應(yīng)
- RISC技術(shù)8位微控制器參數(shù)設(shè)
- 多媒體協(xié)處理器SM501在嵌入式系統(tǒng)中的應(yīng)用
- 基于IEEE802.11b的EPA溫度變送器
- QUICCEngine新引擎推動IP網(wǎng)絡(luò)革新
- SoC面世八年后的產(chǎn)業(yè)機遇
- MPC8xx系列處理器的嵌入式系統(tǒng)電源設(shè)計
- dsPIC及其在交流變頻調(diào)速中的應(yīng)用研究